首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(13Z,13'Z,3R,3'R,6'R)-Lutein has been isolated and purified from extracts of marigold flowers, fresh raw kale (Brassica oleracea var. Acephala), and human plasma and fully characterized by (1)H and (13)C NMR, UV/vis, and MS. While the concentration of (13Z, 13'Z)-lutein in kale and human plasma compared to (all-E,3R,3'R, 6'R)-lutein was found to be quite low, this compound was readily isolated by fractional crystallization of lutein from marigold extracts. Thus, the mother liquors from two consecutive crystallizations of lutein from a saponified extract of marigold flowers were enriched in (13Z,13'Z)-lutein (8.7% of total carotenoids) and employed for the isolation of this compound by HPLC. The identity of the di-Z-lutein in kale and human plasma has been established by comparison of the HPLC-UV/vis-MS profiles of the purified compounds with those of a fully characterized sample, isolated from marigolds. 3-Hydroxy-beta,epsilon-caroten-3'-one and 3'-epilutein have also been identified in extracts from marigolds.  相似文献   

2.
Epidemiological data have shown a link between dietary intake of tomatoes and tomato products (rich in carotenoids) and a decreased risk of chronic diseases. The carotenoid profile in tomato products depends on tomato variety as well as the thermal conditions used in processing. The final carotenoid profile may affect the bioaccessibility and bioavailability of these biomolecules. Therefore, nondestructive, reliable methods are needed to characterize the structural and stereochemical variation of carotenoids. CDCl(3) rapid extraction was used to extract carotenoids from tomato juice as an alternative rapid procedure that minimizes solvents and time consumption prior to NMR analysis. The profile of these biomolecules was characterized by application of high-resolution multidimensional NMR techniques using a cryogenic probe. The combination of homonuclear and heteronuclear two-dimensional NMR techniques served to identify (all-E)-, (5Z)-, (9Z)-, and (13Z)-lycopene isomers and other carotenoids such as (all-E)-beta-carotene and (15Z)-phytoene dissolved in the extracted lipid mixture. The use of one-dimensional NMR enabled the rapid identification of lycopene isomers, thereby minimizing further isomerization of (all-E)-lycopene as compared to HPLC data. On the basis of the assignments accomplished, the carotenoid profile of typical tomato juice was successfully determined with minimal purification procedures.  相似文献   

3.
Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.  相似文献   

4.
5.
Quantitative data with regard to dietary (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, and their (E/Z)-geometrical isomers are scarce, and in most cases, only the combined concentrations of these two carotenoids in foods are reported. Lutein and zeaxanthin accumulate in the human macula and have been implicated in the prevention of age-related macular degeneration (AMD). The qualitative and quantitative distributions of lutein, zeaxanthin, and their (E/Z)-isomers in the extracts from some of the most commonly consumed fruits, vegetables, and pasta products were determined by HPLC employing a silica-based nitrile-bonded column. Green vegetables had the highest concentration of lutein (L) and zeaxanthin (Z), and the ratios of these carotenoids (L/Z) were in the range 12-63. The yellow-orange fruits and vegetables, with the exception of squash (butternut variety), had much lower levels of lutein in comparison to greens but contained a higher concentration of zeaxanthin. The ratio of lutein to zeaxanthin (L/Z) in two North American bread varieties of wheat (Pioneer, Catoctin) was 11 and 7.6, respectively, while in a green-harvested wheat (Freekeh) imported from Australia, the ratio was 2.5. Between the two pasta products examined, lasagne and egg noodles, the latter had a much higher concentration of lutein and zeaxanthin. The levels of the (E/Z)-geometrical isomers of lutein and zeaxanthin in these foods were also determined.  相似文献   

6.
With the aid of multilayer coil countercurrent chromatography, subsequent acetylation, and liquid chromatographic purification of a glycosidic mixture obtained from lulo (Solanum quitoense L.) leaves, three C(13)-norisoprenoid glucoconjugates were isolated in pure form. Their structures were elucidated by NMR, MS, and CD analyses to be the novel (6R,9R)-13-hydroxy-3-oxo-alpha-ionol 9-O-beta-D-glucopyranoside (4a), the uncommon (3S,5R,8R)-3, 5-dihydroxy-6,7-megastigmadien-9-one 5-O-beta-D-glucopyranoside (citroside A) (5a), and the known (6S,9R)-vomifoliol 9-O-beta-D-glucopyranoside (6a). Enzymatic treatment of compound 5a showed the formation of 3-hydroxy-7,8-didehydro-beta-ionone (7), an important lulo peeling volatile, which in its turn after chemical reduction and heated acid catalyzed rearrangement generates beta-damascenone (9) and 3-hydroxy-beta-damascone (10).  相似文献   

7.
Several studies have implicated the potent antioxidant properties of lycopene. However, most of the studies used only the (all-E)-isomer. (Z)-Isomers of lycopene were found in substantial amounts in processed foods and in human tissues. In the present study, we investigated in vitro the antioxidant activity of (5Z)-, (9Z)-, and (13Z)-lycopene compared to the (all-E)-isomer. Additionally, prolycopene, the (7Z,9Z,7'Z,9'Z)-isomer found in tangerine tomatoes, was analyzed. No significant differences were found between the isomers in ferric reducing antioxidant power assay and in bleaching the radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), both based on ET mechanisms. In contrast, scavenging activity against peroxyl radicals generated by thermal degradation of 2,2'-azobis(2-amidinopropane) (AAPH) was higher in the (Z)-isomers. (5Z)-Lycopene was most antioxidant in scavenging lipid peroxyl radicals, evaluated by analyzing the inhibition of MbFe(III) lipid peroxidation of linoleic acid in mildly acidic conditions (pH 5.8) in a micellar environment, modeling a possible antioxidant action in the gastric compartment.  相似文献   

8.
The structures of biosynthetic deuterated carotenoids in labeled vegetables were investigated: (all-E)-lutein and (all-E)-beta-carotene from spinach, and (all-E)-beta-carotene and (all-E)-alpha-carotene from carrots. The vegetables were grown hydroponically using a nutrient solution enriched with deuterium oxide (D(2)O) and were extracted using matrix solid-phase dispersion (MSPD). Deuterium enrichment in the carotenoid molecules was determined by liquid chromatography-mass spectrometry (LC-MS). (all-E)-Lutein and (all-E)-beta-carotene in spinach showed partial deuteration from (2)H(1) to (2)H(12), with the abundance maximum at (2)H(5). (all-E)-beta-Carotene and (all-E)-alpha-carotene from carrots showed partial deuteration from (2)H(1) to (2)H(17), with the abundance maximum at (2)H(11). The (1)H NMR spectra of the four deuterated carotenoids showed additional signals for all methyl groups and decreased signal intensity for the olefinic protons and the methylene protons in the ring. These differences are due to isotopic effects and are based on the substitution of protons by deuterium atoms. The deuteration was distributed randomly throughout the carotenoid molecules.  相似文献   

9.
Both microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) have been widely applied in the extraction of a variety of biologically active compounds including carotenoids due to their lower pollution to environment, high extraction efficiency, lower cost, and shorter extraction time as compared to conventional extraction techniques. However, there are few reports on their effects on the stability of these compounds. In the present study, the stability of (all-E)-astaxanthin, one of the carotenoids, was examined under the action of both ultrasound and microwave. Results showed that microwave induced the isomerization of (all-E)-astaxanthin to its Z analogues, preferentially to (13Z)-astaxanthin as analyzed by HPLC coupled with diode array detection and LC-MS; and the percentage of the isomerization increased with increasing both treatment time and microwave power. In contrast to the microwave, the ultrasound degraded (all-E)-astaxanthin to unidentified colorless compound(s) as suggested by HPLC analysis and UV/vis measurements, and the degradation likewise increased as both treatment time and ultrasonic power increased. The results presented here emphasized that both MAE and UAE techniques should be carefully used in the extraction of unstable compounds such as (all-E)-astaxanthin.  相似文献   

10.
Isomerization of carotenoids, which is often encountered in food processing under the influence of temperature and light, may play a role in the observed protective effects of this group of secondary plant products. Investigation of in vitro antioxidant activity of prominent carotenoid geometrical isomers was undertaken in light of recent reports illustrating a large percentage of carotenoid (Z)-isomers in biological fluids and tissues. Alpha-carotene, beta-carotene, lycopene, and zeaxanthin were isolated from foods or supplements and subsequently photoisomerized with iodine as a catalyst. Major Z-isomers of each carotenoid were fractionated by semipreparative C(30) HPLC. In vitro antioxidant activity of all isomers collected was measured photometrically using the Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of 17 geometrical isomers investigated ranged from 0.5 to 3.1 mmol/L. Three unidentified (Z)-isomers of lycopene showed the highest antioxidant activity, being significantly higher than the result for (all-E)-lycopene, which had approximately two times the activity of (all-E)-beta-carotene. On the other hand, (9Z)-zeaxanthin had a more than 80% lower TEAC value compared to that of (all-E)-lycopene. These results allow for the in vivo relevance of (Z)-isomers of carotenoids to be considered.  相似文献   

11.
A simple, reliable, and gentle saponification method for the quantitative determination of carotenoids in green vegetables was developed. The method involves an extraction procedure with acetone and the selective removal of the chlorophylls and esterified fatty acids from the organic phase using a strongly basic resin (Ambersep 900 OH). Extracts from common green vegetables (beans, broccoli, green bell pepper, chive, lettuce, parsley, peas, and spinach) were analyzed by high-performance liquid chromatography (HPLC) for their content of major carotenoids before and after action of Ambersep 900 OH. The mean recovery percentages for most carotenoids [(all-E)-violaxanthin, (all-E)-lutein epoxide, (all-E)-lutein, neolutein A, and (all-E)-beta-carotene] after saponification of the vegetable extracts with Ambersep 900 OH were close to 100% (99-104%), while the mean recovery percentages of (9'Z)-neoxanthin increased to 119% and that of (all-E)-neoxanthin and neolutein B decreased to 90% and 72%, respectively.  相似文献   

12.
Treatment of canthaxanthin (beta,beta-carotene-4,4'-dione) (1) with nickel peroxide in dichloromethane yielded a series of cleavage products, i.e., 4-oxo-beta-ionone (2), (7E, 9E)-4-oxo-beta-apo-11-carotenal (3a), (7E, 9Z)-4-oxo-beta-apo-11-carotenal (3b), 4-oxo-beta-apo-13-carotenone (4), 4-oxo-beta-apo-14'-carotenal (5), 4-oxo-beta-apo-12'-carotenal (6), and 4-oxo-beta-apo-10'-carotenal (7). In addition, oxidized canthaxanthin derivatives, i.e., isomeric ketols all-trans-9, 10-dihydro-9-hydroxy-10-oxo-canthaxanthin (8a), (9'Z)-9, 10-dihydro-9-hydroxy-10-oxo-canthaxanthin (8b), and (13'Z)-9, 10-dihydro-9-hydroxy-10-oxo-canthaxanthin (8c) were obtained together with the tentatively identified (9'Z)-canthaxanthin-20-al (9). Structure elucidation of the reaction products was achieved by mass spectrometry and two-dimensional NMR spectroscopy.  相似文献   

13.
Striga gesnerioides is a root parasitic weed of economic significance to cowpea (Vigna unguiculata) crops in Western Africa. Seeds of the parasite germinate in response to cowpea root exudates. Germination stimulants for the seeds were isolated from the hydroponic culture filtrate of cowpea, and their structures were unambiguously determined as (-)-(3aR,4R,8bR,2'R)-ent-2'-epi-orobanchol and (+)-(3aR,4R,8bR,2'R)-ent-2'-epi-orobanchyl acetate, on the basis of mass, CD, and (1)H NMR spectra; optical rotatory power; and chromatographic behavior on HPLC. The alcohol was first isolated and identified from the cowpea root exudates, and the acetate may be the same compound that had been previously isolated from the exudates and designated as alectrol. Identity of the stimulants produced by cowpea to those produced by red clover (Trifolium pratense) was confirmed.  相似文献   

14.
Tomato sauces were produced from unique tomato varieties to study carotenoid absorption in humans. Tangerine tomatoes, high in cis-lycopene, especially prolycopene (7Z,9Z,7'Z,9'Z), and high-beta-carotene tomatoes as an alternative dietary source of beta-carotene were grown and processed. Sauces were served after 2 week washout periods and overnight fasting for breakfast to healthy subjects (n = 12, 6M/6F) in a randomized crossover design. The serving size was 150 g (containing 15 g of corn oil), tangerine sauce containing 13 mg of lycopene (97.0% as cis-isomers) and high-beta-carotene sauce containing 17 mg of total beta-carotene (1.6% as the 9-cis-isomer) and 4 mg of lycopene. Blood samples were collected 0, 2, 3, 4, 5, 6, 8, and 9.5 h following test meal consumption and carotenoids determined in the plasma triacylglycerol-rich lipoprotein fraction by HPLC-electrochemical detection. Baseline-corrected areas under the concentration vs time curves (AUC) were used as a measure of absorption. AUC0-9.5h values for total lycopene in the tangerine sauce group were 870 +/- 187 (nmol.h)/L (mean +/- SEM) with >99% as cis-isomers (59% as the tetra-cis-isomer). The AUC0-9.5h values for total beta-carotene and lycopene after consumption of the high-beta-carotene sauce were 304 +/- 54 (4% as 9-cis-carotene) and 118 +/- 24 (nmol.h)/L, respectively. Lycopene dose-adjusted triacylglycerol-rich lipoprotein AUC responses in the tangerine sauce group were relatively high when compared to those in the literature and the high-beta-carotene group. The results support the hypothesis that lycopene cis-isomers are highly bioavailable and suggest that special tomato varieties can be utilized to increase both the intake and bioavailability of health-beneficial carotenoids.  相似文献   

15.
Epoxyols are generally accepted as crucial intermediates in lipid oxidation. The reactivity of tert-butyl (9R,10S,11E,13S)-9, 10-epoxy-13-hydroxy-11-octadecenoate (11a,b) toward lysine moieties is investigated, employing N(2)-acetyllysine 4-methylcoumar-7-ylamide (12) as a model for protein-bound lysine. The prefixes R and S denote the relative configuration at the respective stereogenic centers. Independent synthesis and unequivocal structural characterization are reported for 11a,b, its precursors, and tert-butyl (9R,10R,11E, 13S)-10-(?5-(acetylamino)-6-[(4-methyl-2-oxo-2H-chromen-7-yl)amino ]-6 -oxohexyl?amino)-9,13-dihydroxy-11-octadecenoate (13a-d). Reactions of 11a,b and 12 in 1-methyl-2-pyrrolidone (MP) and MP/water mixtures at pH 7.4 and 37 degrees C for 56 days show formation of the aminols 13a-d to be favored by an increased water content. The same trend is observed for hydrolytic cleavage of 11a,b to tert-butyl (E)-9,10, 13-trihydroxy-11-octadecenoate (14) and tert-butyl (E)-9,12, 13-trihydroxy-10-octadecenoate (15). Under the given conditions, aminolysis proceeds via an S(N)2 substitution, in contrast with the S(N)1 process for hydrolysis. In the MP/water (8:2) incubation, 15. 8% of 12 has been transformed to 13a-d and 10.5% of 11a,b hydrolyzed to the regioisomers 14 and 15 after 8 weeks, respectively. Aminolysis of alpha,beta-unsaturated epoxides by lysine moieties therefore is expected to be an important mode of interaction between proteins and lipid oxidation products.  相似文献   

16.
Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).  相似文献   

17.
Fresh exudates from the lacquer tree, Rhus vernicifera DC, were extracted with acetone and the solution was chromatographed to isolate monomer, dimer, trimer, and oligomer fractions of urushiols. Constituents of the monomeric and dimeric fractions were then identified by two-dimensional (2D) 1H-13C heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond coherence (HMBC) NMR spectroscopic techniques. The results showed that the monomeric fraction contained 3-[8'Z,11'E,13'Z-pentadecatrienyl]catechol (1), 3-[8'Z,11'Z,14'-pentadecatrienyl]catechol (2), and 3-pentadecanyl]catechol (3), which was verified by HPLC analysis. The dimeric fraction contained 8'-(3' ',4' '-dihydroxy-5' '-alkenyl)phenyl-3-[9'E,11'E,13'Z-pentadecatrienyl]catechol (4), 14'-(3' ',4' '-dihydroxy-5' '-alkenyl)phenyl-3-[8'Z,10'E,12'E-pentadecatrienyl]catechol (5), 2-hydroxyl-3- or -6-alkenylphenyl ethyl ether (6), 14'-(3' ',4' '-dihydroxy-2' '-alkenyl)phenyl-3-[8'Z,10'E,12'E-pentadeca-trienyl]catechol (7), 15'-(2' '-hydroxy-3' '- or -6' '-alkenyl)phenyloxy-3-[8'Z,11'Z,13'E)-pentadecatrienyl]catechol (8), 14'-(2' ',3' '-dihydroxy-4' '-alkenyl)phenyl-3-[8'Z,10'E,12'E-pentadecantrienyl]catechol (9), 1,1',2,2'-tetrahydroxy-6,6'-dialkenyl-4,3'-biphenyl (10), 1,1',2,2'-tetrahydroxy-6,6'-dialkenyl-4,4'-biphenyl (11), 1,1',2,2'-tetrahydroxy-6,6'-dialkenyl-5,4'-biphenyl (12), and 1,2,1'-trihydroxy-6,6'-dialkenyldibenzofuran (13) as constituents. In addition, dimeric ethers and peroxides, such as compounds 14 and 15, were produced by autoxidation of monomeric urushiols in atmospheric air. The possible reaction mechanisms for the dehydrogenative polymerization of urushiols by Rhus laccase present in the fresh raw exudates under the atmospheric oxygen are discussed on the basis of structures identified. This is of primary importance because the use of the urushi exudates as coating materials does not involve organic solvents and is an environmentally friendly process.  相似文献   

18.
The structure of a new carotenoid, isolated from the fruits of the red tomato-shaped paprika Capsicum annuum L., was elucidated to be (3S,5R,6S,5'R)-3,6-epoxy-5,6-dihydro-5-hydroxy-beta,kappa-carotene-3',6'-dione by spectroscopic analyses, including fast atom bombardment collision-induced dissociation-mass spectrometry/mass spectrometry (FAB CID-MS/MS) and was designated capsanthone 3,6-epoxide. Capsanthone 3,6-epoxide is assumed to be an oxidative metabolite of capsanthin 3,6-epoxide in paprika.  相似文献   

19.
Three C(13)-norisoprenoid compounds, 3,6,9-trihydroxymegastigma-4,7-diene (6), 3,4,9-trihydroxymegastigma-5,7-diene (4), and the actinidols (8), have all been synthesized and subjected to acid hydrolysis. All three were shown to generate (E)-1-(2,3,6-trimethylphenyl)buta-1,3-diene (1) under wine conservation conditions. At 45 degrees C, approximately 4000-5000 ng/L of 1 was formed from 1.0 mg/L of precursor, after 173 days, while at 25 degrees C more wine-like amounts (200-600 ng/L) were observed. A glucoside, 4,5-dihydrovomifoliol-C(9)-beta-d-glucopyranoside (9b), was isolated from grapevine leaves by multilayer coil countercurrent chromatography (MLCCC), and its stereochemistry was deduced as being (5R, 6S, 9R) by NMR and CD spectroscopy. Hydrolysis of this glucoside produced 1, but in quantities insufficient to account for the levels observed in wine.  相似文献   

20.
Glycosidically bound compounds were isolated from the methanol extract of fresh rhizomes of smaller galanga (Alpinia officinarum Hance). Nine glycosides (1-9) were finally obtained by reversed-phase HPLC and their structures were elucidated by MS and NMR analyses. They were the three known glycosides, (1R,3S,4S)-trans-3-hydroxy-1,8-cineole beta-D-glucopyranoside (1), benzyl beta-D-glucopyranoside (3), and 1-O-beta-D-glucopyranosyl-4-allylbenzene (chavicol beta-D-glucopyranoside, 4); and the six novel glycosides, 3-methyl-but-2-en-1-yl beta-D-glucopyranoside (2), 1-hydroxy-2-O-beta-D-glucopyranosyl-4-allylbenzene (5), 1-O-beta-D-glucopyranosyl-2-hydroxy-4-allylbenzene (demethyleugenol beta-D-glucopyranoside, 6), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-2-hydroxy-4-allylbenzene (demethyleugenol beta-rutinoside, 7), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-4-allylbenzene (chavicol beta-rutinoside, 8), and 1,2-di-O-beta-D-glucopyranosyl-4-allylbenzene (9). Compounds 2-9 were detected for the first time as constituents of galanga rhizomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号