首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a commercially available compound probiotics product containing Bacillus subtilis YB‐1 (50%) and Bacillus cereus YB‐2 (50%) fed to sea cucumbers, Apostichopus japonicus (Selenka) on challenge infections and non‐specific immune responses was assessed. Sea cucumbers (were randomly allocated into nine aquariums at a density of 30 sea cucumbers per tank and triplicate groups) were fed diets containing 0 (control), 107 and 1010 cfu (g diet)?1 of the probiotics mixture for 32 days. The growth factors and immunological parameters were measured. In addition, the effects on resistance against Vibrio alginolyticus infection were also evaluated. The results indicate that all the immunological parameters (phagocytic activity, superoxide anion production, lysozyme activity, catalase activity and phenoloxidase activity) measured and the growth rate of sea cucumbers fed 1010 cfu of the probiotics mixture were significantly (P < 0.05) improved than control groups at 16 and 32 days. After challenging, the cumulative mortality for the control was 100%, whereas the cumulative mortality for sea cucumbers fed 1010 cfu of the probiotics mixture was 47% (P < 0.05). Although the total autochthonous intestinal heterotrophic bacterial counts were not affected by dietary treatment (P > 0.05), Bacillus sp. levels were significantly elevated in sea cucumbers fed the probiotics mixture (P < 0.05). These results confirmed that administration of the probiotics mixture in the diet stimulated non‐specific immune responses and enhanced the growth performance of sea cucumbers, and was effective in controlling infections caused by V. alginolyticus.  相似文献   

2.
Vibrio alginolyticus is an important pathogen that causes a variety of diseases in marine animals including the sea cucumber, Apostichopus japonicus. Herein, we describe a two‐phage mixture which may have potential for use as an antibacterial agent to prevent V. alginolyticus infection in the sea cucumber. A Z1210 bacterial isolate was cultured from diseased sea cucumber suffering from skin ulcerations and viscera ejection. The isolate was identified as V. alginolyticus by morphology and sequence similarity analysis. Subsequently, two bacteriophages infecting isolate Z1210 were isolated from the drainpipe of an aquatic market. Morphologically, these two phages were classified as members of Podoviridae (PVA1) and Myoviridae (PVA2) and each phage showed high virulence in an in vitro experiment. Additionally, an experiment conducted in a marine environment showed that a mixture of the two phages increased the survival of sea cucumbers (10 ± 2 g) to 73, 50, and 47% when it was used with a multiplicity of infection of 10, 1, or 0.1, respectively. This result differed markedly from the control without phage (3% survival) while there was no significant difference between the 80 and 47% survival observed for two antibiotic treatments (5 mg/L doxycycline and 10 mg/L kanamycin, respectively).  相似文献   

3.
This study deals with the mortality and related physiological responses of aestivating sea cucumber Apostichopus japonicus to acute salinity decrease. Aestivating and active sea cucumbers were exposed to a decrease in salinity (from 30 to 20 psu) at a rate of 2.5 psu every 6 h, and then maintained at 20 psu for 96 h. The mortality of aestivating sea cucumbers was ~30%, which was significantly higher than that of active sea cucumbers (~10%). This result indicated that sea cucumbers in aestivation were more susceptible to hypo‐salinity stress. To elucidate the underlying physiological mechanisms, the osmotic pressure in coelomic fluid and the levels of hsp70 and hsp90 mRNA in aestivating and active sea cucumbers were measured. No significant difference in osmoregulation was observed between the two groups. The osmotic pressure of coelomic fluid in both groups changed with decrease in ambient salinity. There were significant differences in the time course and magnitude of hsp70 and hsp90 expression between the two groups. After exposure to decreased salinity, aestivating sea cucumbers showed a delayed up‐regulation of hsp70 and hsp90 expression compared with animals in active state, and these levels decreased rapidly to control values. The expression of hsp70 and hsp90 in aestivating sea cucumbers were significantly lower than those in active sea cucumbers after salinity change. The differences in hsp70 and hsp90 expression between the states may partly explain the higher mortality of sea cucumbers in aestivation when exposed to low salinity.  相似文献   

4.
Taurine has been widely used as a growth‐ or health‐promoting additive in aquatic animals because of its multiple functions, while little work has been done on its effects on sea cucumbers, in spite of the occurrence of serious diseases. In this study, juvenile sea cucumbers (4.68 ± 0.04 g) were fed diets supplemented with taurine at 0% (control), 0.1, 0.25, 0.5, 1, and 2% for 8 wk. At the end of an 8‐wk feeding trial, growth performance of sea cucumbers was not significantly affected by dietary taurine (P > 0.05). However, dietary taurine significantly elevated intestinal lipase activities of sea cucumbers (P < 0.05). Intestinal amylase activity and trypsin activity in sea cucumbers did not show significant changes after animals were fed diets supplemented with taurine (P > 0.05). Dietary taurine at all five dosages significantly increased total antioxidant capacity in sea cucumbers, while superoxide dismutase activity in groups with dietary taurine at 0.25 and 0.5% was significantly higher than that of the control group (P < 0.05). Therefore, it appears that taurine could be used as a potential feed additive to confer better health of farmed sea cucumbers.  相似文献   

5.
The system nitrogen (N), phosphorous (P) budget, N/P utilization rate and the physiological response mechanism of the abalone Haliotis discus hannai (body weight: 12.87 ± 0.82 g) and the sea cucumber Apostichopus japonicus (body weight: 10.85 ± 1.16 g) to different co‐culture environment conditions were examined. Animals were kept in a multilayer, cubic recirculating aquaculture system at different polyculture densities (abalones at 400 ind/m2in monoculture [Group C] and abalones at 400 ind/m2with sea cucumbers at 10 ind/m2 [AS1] or 20 ind/m2 [AS2]). Each treatment was replicated four times, and the experimental cycle was 90 days. No significant difference in survival rate of abalones was detected when the stocking density of sea cucumbers increased from 10 to 20 ind/m2, but the concentrations of total ammonia nitrogen and nitrite nitrogen in the water were significantly higher in AS2 than in AS1. Survival rate, specific growth rate (SGR) of body weight of sea cucumbers and SGR of body weight of abalones were significantly lower in AS2 than in AS1. No significant difference in protease (PES), lipase, amylase and cellulase activities of abalones was identified between Group C and AS1, but the PES and amylase activities of abalones and sea cucumbers in AS1 were significantly higher than those in AS2. In AS1, the N/P output from harvesting of abalones and sea cucumbers and the N/P utilization rates were significantly higher than those in AS2. Although the N/P output from faeces was significantly lower in AS2 than in Group C and AS1, the N/P output from the water layer was significantly higher than that in AS1. The expression levels of Cu/Zn superoxide dismutase (Cu/Zn‐SOD) and heat shock protein 70 (HSP70) of both abalones and sea cucumbers in AS2 were significantly higher than those in AS1. No significant difference in expression of catalase (CAT) and HSP90of abalones was identified among these groups, but the expression levels of CAT and HSP90of sea cucumbers in AS2 were significantly higher than those in AS1. These results indicate that stocking sea cucumbers at 10 ind/m2 in the polyculture system will relieve the organic load on the system and improve the N/P utilization rate. It will also increase aquaculture production and improve the ecological and economic benefits of the system.  相似文献   

6.
This study investigated monthly changes of sedimentation and sediment properties in three different culture systems (ponds) – i.e. jellyfish Rhopilema esculenta monoculture (J), sea cucumber Apostichopus japonicus and jellyfish co‐culture (SJ) and sea cucumber monoculture (S) – to verify the feasibility of co‐culturing jellyfish and sea cucumbers. Results showed that jellyfish culture accelerated the settling velocity of total particulate matter (TPM). Average TPM settling velocities in the SJ (75.6 g m?2 day?1) and J (71.1 g m?2 day?1) ponds were significantly higher than that in the S pond (21.7 g m?2 day?1) from June to September during the jellyfish culture period. Average settling velocities of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in the SJ pond increased significantly by 3.0, 2.9, 3.3 and 3.8 times, respectively, compared with those in the S pond. Sediment contents of OM, TOC, TN and TP in the SJ and J ponds were significantly higher than those in the S pond during the jellyfish culture season. The specific growth rate of sea cucumbers feeding on SJ sediment was significantly higher than that of those feeding on S sediment. Co‐culturing sea cucumbers with jellyfish may help alleviate benthic nutrient loading due to the jellyfish and provide a secondary cash crop.  相似文献   

7.
The feasibility of co‐culturing the sea cucumber Holothuria leucospilota Brandt in a subtropical fish farm was investigated in a field study. Sea cucumbers were cultured in the fish farm in cages suspended at 4 m deep (suspended culture) and directly on the seafloor (bottom culture). The survival and growth of the sea cucumbers were monitored twice during the 3‐month, summer experimental period (May 26–August 14, 2010). Results showed that the suspension‐cultured sea cucumbers exhibited excellent survival rate (100%) during the whole study period. There also occurred no mortality in the bottom‐cultured sea cucumbers during the first culture period (May 26–July 13); but all these died from anoxia caused by water column stratification during the second culture period (July 14–August 14). The specific growth rate of the bottom‐cultured sea cucumbers (1.05 ± 0.21 % day?1) was nearly double that of the suspended culture animals (0.57 ± 0.21 % day?1) during the first culture period, and the growth rates of the suspended culture sea cucumbers in the second culture periods (0.46 ± 0.24 % day?1) was only a little lower than that of the first period. The sea cucumbers H. leucospilota could ingest and assimilate sediment with high organic matter content with an average assimilation efficiency of 14.9 ± 3.9%. This study indicated that fish farm detritus can be effectively used as a food source for the sea cucumber and that it can be turned into a valuable secondary crop in the form of the sea cucumber biomass.  相似文献   

8.
Stable carbon and nitrogen isotope ratios (δ13C/δ15N) were assessed as a means to ascertain the recent in situ feeding history of the common New Zealand sea cucumber Australostichopus mollis in relation to nutrient enrichment from a longline green‐lipped mussel (Perna canaliculus) farm in Northern New Zealand. δ13C and δ15N isotopic signatures and the ratios of sea cucumbers sampled from within the impact footprint of the mussel farm were compared with those of sea cucumbers residing on adjacent natural reefs. Sea cucumbers from beneath mussel farming longlines had significantly different δ13C stable isotope signatures in comparison with sea cucumbers collected from neighbouring natural reef habitats. This difference supports the hypothesis that sea cucumbers in the same bay maintain distinctly different feeding histories, with those residing beneath mussel farming longlines deriving tissue carbon from sediment impacted by farming activities. This hypothesis is further supported by the finding that the isotope signature of sediment collected from beneath the mussel farm is consistent with the expectation that sea cucumbers were feeding on and consuming sediment enriched with bivalve waste (faeces and pseudo‐faeces). In contrast, the nitrogen stable isotope signature (δ15N) was found to be similar between sites for both sea cucumbers and assumed food sources. Both findings lend support to the viability of future sea cucumber/green‐lipped mussel farm polyculture systems. Sea cucumbers in different locations (mussel farm, natural reef) possessed distinctly different isotope signatures, suggesting that mixing of sea ranched sea cucumbers with natural reef populations would be negligible or non‐existent. Similarities between the isotope signatures in low metabolic tissue of sea cucumbers residing at the mussel farm site to that of mussel farm‐impacted sediment suggest that cucumbers beneath mussel farms appear to have high rates of retention at the farm site.  相似文献   

9.
A feeding trial was conducted to estimate the optimum level of dietary n‐3 highly unsaturated fatty acids (HUFAs) for juvenile sea cucumber, Apostichopus japonicas, based on growth performance and fatty acid compositions. Diets with five n‐3 HUFAs levels (0.15, 0.22, 0.33, 0.38, and 0.46%) were fed to sea cucumber juveniles (1.97 ± 0.01 g) once a day for 60 d. The sea cucumbers fed diets containing 0.22% n‐3 HUFAs showed significantly (P < 0.05) higher body weight gain, feed efficiency, and protein efficiency ratio than the sea cucumbers fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.33, 0.38, and 0.46% n‐3 HUFAs. The sea cucumbers fed diets containing 0.46% n‐3 HUFAs showed significantly (P < 0.05) higher eicosapentaenoic acid and saturated fatty acid than the sea cucumber fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.22, 0.33, and 0.38% n‐3 HUFAs. The results of growth performance and n‐3 HUFA compositions of body wall indicated that the optimum level of dietary n‐3 HUFAs for juvenile sea cucumber is between 0.22 and 0.46%.  相似文献   

10.
A 4‐week growth trial was conducted to compare the effects of different feeding strategies of dietary immunostimulants on the growth, immunity and resistance against Vibrio splendidus of sea cucumbers Apostichopus japonicus (Selenka). Six feeding strategies were set, including feeding immunostimulants‐free diet continuously (control), feeding dietary β‐glucan (1.25 g kg?1 diet) continuously, feeding dietary mannan‐oligosaccharides (MOS; 2.00 g kg?1 diet) continuously, feeding β‐glucan 2 days followed by MOS 5 days alternately, feeding β‐glucan 5 days followed by MOS 2 days alternately and feeding β‐glucan 7 days followed by MOS 7 days alternately. The sea cucumbers fed immunostimulants showed higher specific growth rate (SGR) and lower cumulative mortality than control (< 0.05). When sea cucumbers were fed with β‐glucan continuously, total coelomocytes counts and superoxide anion were significantly higher than control on the 4th day (< 0.05). However, these two immune parameters were not significantly higher than those in control after the 18th day (> 0.05). While sea cucumbers continuously fed MOS, these two immune parameters were not significantly higher than control until the 15th day. All immune parameters of the sea cucumbers fed with β‐glucan and MOS alternately were significantly higher than those in control during the experiment (< 0.05). The sea cucumbers fed with β‐glucan 7 days followed MOS 7 days alternately showed the highest SGR and second lowest cumulative mortality. It was suggested that this feeding strategy is most suitable for sea cucumbers.  相似文献   

11.
A feeding trial was conducted to determine the adequate dietary ascorbic acid (AsA) levels and the effects on growth, meat quality and antioxidant status of sea cucumber (10.04 ± 0.06 g), Apostichopus japonicus. l ‐ascorbyl‐2‐polyphosphate (35% AsA equivalent) was supplemented separately to the basal diet to obtain five AsA levels, 0, 598, 1473, 4676 and 14340 mg kg?1 diet respectively. After 60‐day feeding trial, the sea cucumbers fed diets containing 598 and 1473 mg AsA kg?1 showed significantly higher (< 0.05) body weight gain and specific growth rate values than the sea cucumbers fed control diets. The sea cucumbers fed diets containing 1473 and 4676 mg AsA kg?1 showed significantly higher (< 0.05) hydroxyproline contents than those of the sea cucumbers fed diets containing 0 and 598 mg AsA kg?1. Antioxidant enzymes such as total antioxidant capacity, superoxide dismutase and glutathione peroxidase showed increasing trends with the increasing dietary AsA levels, but no significant differences (> 0.05) were observed when the sea cucumbers fed diets with high dietary AsA levels. The content of malondialdehyde had the opposite trend of antioxidant enzymes. In conclusion, the adequate dietary AsA level focusing on growth performance of sea cucumber is between 598 and 1473 mg kg?1 diet. Furthermore, high level of dietary AsA (between 598 and 4676 mg kg?1 diet) improved meat quality and antioxidant status.  相似文献   

12.
A feeding trial was conducted to evaluate the efficacy of dietary heat‐killed Lactobacillus plantarum L‐137 (HK L‐137) on growth performance, digestive, non‐specific immune and phagocytosis of sea cucumber, Apostichopus japonicus. Sea cucumbers (initial body weight 1.35 ± 0.04 g) were fed diets supplemented with five levels of HK L‐137 (0, 0.005, 0.025, 0.05 and 0.25 g HK L‐137 kg?1 diets) for 60 days. Results indicated sea cucumbers fed with diets containing 0.05 and 0.25 g HK L‐137 kg?1 diets showed significantly (P < 0.05) higher body weight gain and specific growth rate than other groups. Sea cucumbers fed with diets containing 0.05 and 0.25 g HK L‐137 kg?1 diets showed significantly (P < 0.05) higher protease activity than control group. Higher amylase, lysozyme and phagocytic activities were found in 0.25 g HK L‐137 kg?1 diet group. Higher superoxide dismutase enzyme and alkaline phosphatase activity was found in 0.05 g HK L‐137 kg?1. While no significant differences (P > 0.05) were found in acid phosphatase activity. These results suggested that dietary supplementation of 0.05 g HK L‐137 kg?1 diets would have benefit on growth, digestive enzymes and several non‐specific immune parameters of sea cucumber.  相似文献   

13.
Feasibility of offshore co‐culture of abalone and sea cucumber was investigated in Northern China. Survival and growth of abalone, Haliotis discus hannai Ino, and sea cucumber, Apostichopus japonicus, co‐cultured in abalone cages from suspended longlines, in the offshore area, were examined. Abalone and sea cucumbers were co‐cultured at density ratios of both 3:1 and 6:1 for 1 yr. Abalone were fed with fresh kelp and no additional feed was given to sea cucumbers. Survival of abalone and sea cucumber was 100% for all treatments. Abalone and sea cucumber grew well; the body weight (BW) of abalone and sea cucumber was nearly doubled and had reached a commercial size. There were no significant differences in the growth rates for both abalone and sea cucumber between the two density treatments. The specific growth rate of BW of abalone (SGRbw) was highest in June, with a value of 0.536%/d. Growth rate of sea cucumber (SGRsc) was highest in December, reached 1.84%/d, with an annual average SGRsc of 0.182%/d. Results suggested that the offshore co‐culture of abalone and sea cucumber was feasible offshore. The co‐culture of abalone with sea cucumbers may provide an additional valuable crop without additional financial input.  相似文献   

14.
Commercially valuable sea cucumbers are potential co‐culture species in tropical lagoon environments, where they may be integrated into established aquaculture areas used for seaweed farming. In the current study, wild‐caught juvenile sea cucumbers, Holothuria scabra, and red seaweed Kappaphycus striatum were co‐cultured on Zanzibar, United Republic of Tanzania. Sea cucumbers (97 g ± 31 SD,= 52) were cultured in mesh enclosures at initial cage stocking densities of 124 ± 21 SD and 218 ± 16 SD g m?2 under seaweed culture lines. Over 83 days, individual growth rate (1.6 g d?1 ± 0.2 SD) of sea cucumbers at low stocking density was significantly higher (χ2 = 8.292, d.f. 1, P = 0.004) than at high‐stocking density (0.9 g d?1 ± 0.1 SD). Seaweed individual growth rates [6.27 (±0.3 SE) g d?1] were highest in co‐culture with sea cucumber at low density but did not differ significantly from high sea cucumber density or seaweed monoculture treatments (χ2 = 3.0885, d.f. = 2, = 0.2135). Seaweed growth varied significantly (χ2 = 35.6, d.f. = 2, < 0.0001) with sampling period, with the final sampling period resulting in the highest growth rate. Growth performance for seaweed and sea cucumbers (χ2 = 3.089, d.f. = 2, = 0.21 and χ2 = 0.08, d.f. = 1, = 0.777 respectively), did not differ significantly between monoculture and co‐culture treatments, yet growth in co‐culture was comparable with that reported for existing commercial monoculture. Results indicate H. scabra is a highly viable candidate species for lagoon co‐culture with seaweed. Co‐culture offers a more efficient use of limited coastal space over monoculture and is recommended as a potential coastal livelihood option for lagoon farmers in tropical regions.  相似文献   

15.
This study investigated how Jerusalem artichoke powder (JAP) affected the growth, immunity, and gut microbiota of the sea cucumber, Apostichopus japonicus Selenka. Animals were fed diets containing antibiotic (1 ppm) or five levels of JAP (0, 2.5, 5, 10, and 15 g/kg). After the feeding trial, three sea cucumbers were sampled per tank to assay for immunity and gut microbiota composition. Dietary supplementation of 2.5 g/kg JAP significantly improved the growth rate and phenoloxidase activity of sea cucumbers. The diet containing 5 g/kg of JAP increased the survival rate and phagocytic activity, and the diet containing 15 g/kg of JAP increased the growth rate and total coelomocyte count of sea cucumbers. Moreover, exposure to antibiotics significantly changed the microbiota of sea cucumbers, while the JAP supplementation stimulated the development of microbiota communities, which could be more homogeneous. Supplementing the diets with 15 g/kg of JAP increased the growth of Rhodobacterales, and this may underlie the higher growth rate of sea cucumbers in this treatment. Considered together, our results suggest that supplementing the diet of sea cucumber with JAP may be beneficial for nonantibiotic farming of sea cucumber.  相似文献   

16.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

17.
Abstract Biological traits of the sea cucumber Cucumaria frondosa (Gunnerus) relevant to both ecological and management perspectives were investigated in the Newfoundland region. Abundance, size and fitness of adults were maximal on hard substrates. Larvae settled ~5 weeks post‐spawning and juveniles reached a maximum length of 6 mm after 24 months. Additional size classes of sea cucumbers kept under natural environmental conditions exhibited slow seasonal growth attuned to phytoplankton blooms, indicating that ~25 years may be required to reach market size. Juveniles of the predator sea star Solaster endeca (L.) readily fed upon 1.5‐2 mm long sea cucumbers. Predation rates on adult C. frondosa by adult S. endeca were modulated by temperature and biased towards injured specimens, suggesting that trawling may exacerbate predation pressure. The combination of slow growth and high predatory pressure enhanced by fishing activities emphasises the need for precautionary management of this emerging fishery in Atlantic Canada.  相似文献   

18.
A feeding trial of three protein (200, 300 and 400 g kg−1) and two lipid levels (20 and 100 g kg−1) was conducted to determine the proper dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Dietary protein and lipid levels were adjusted by adding with different levels of soybean meal, squid liver oil and soybean oil, respectively. Three replicate groups of sea cucumbers (average weight of 1.3 g) were fed the experimental diets for 12 weeks. At the end of the feeding trial, survival was not affected by dietary protein and lipid levels (P > 0.05). Weight gain (WG) and specific growth rate (SGR) of sea cucumbers were significantly affected by dietary protein (P < 0.006) and lipid levels (P < 0.001). The highest WG and SGR were observed in sea cucumbers fed the 200 and 400 g kg−1 protein diet with 20 g kg−1 lipid (P < 0.05). WG and SGR of sea cucumbers fed the diet containing 20 g kg−1 lipid were higher than those of sea cucumbers fed the 100 g kg−1 lipid diets (P < 0.05) at each dietary protein level. Apparent digestibility coefficients of dry matter, crude protein, carbohydrate and gross energy of sea cucumbers fed the 20 g kg−1 lipid diets were significantly higher than those of the 100 g kg−1 lipid diets at 200 and 400 g kg−1 protein (P < 0.05). Moisture, crude protein, crude lipid and ash contents were not significantly different among the groups. The results of this study indicate that the diet containing 200 g kg−1 protein (170 g kg−1 digestible protein) with 20 g kg−1 lipid (13 g kg−1 digestible lipid) may be sufficient for optimum growth of juvenile sea cucumber.  相似文献   

19.
This study investigated the ability of the brown sea cucumber, Stichopus (Australostichopus) mollis, to grow on diets made from aquaculture waste. Weight‐standardized rates (ingestion, assimilation, respiration, ammonia excretion, and fecal excretion) of small (juvenile), medium (mature), and large (mature) sea cucumbers were measured and energy budgets constructed to quantify their growth rates when offered three different diets at 14, 16, and 18 C. Three types of diet were offered: uneaten abalone food (diet A) and two types of abalone feces, one where abalone were fed 50% Macrocystis pyrifera and 50% Undaria pinnatifida macroalgae (diet B) and the other where abalone were fed 25% M. pyrifera, 25% U. pinnatifida, and 50% Adam & Amos Abalone Food, where the latter is an industry standard diet (diet C). The organic contents of the diets were much higher than natural sediments and varied such that diet A (76.40%) > diet B (54.50%) > diet C (37.00%). Diet had a significant effect on S. mollis ingestion rates, assimilation efficiencies, and consequently energy budgets and growth rates. Greater quantities of organic matter (OM) from diet A and diet B were ingested and assimilated by the sea cucumbers compared with the OM in diet C. The energy budgets indicated that after taking routine metabolism into account, all sizes of sea cucumbers had energy to allocate to growth when offered diet A and diet B, but only juveniles had energy to allocate to growth when offered diet C. Fecal excretion rates when offered diet A and diet C at 14 C were greater than those at 18 C, but neither was significantly different from that at 16 C. Ammonia excretion rates increased nonlinearly with temperature for small and medium sea cucumbers but not for large sea cucumbers. Weight‐standardized respiration rates increased with temperature and unexpectedly with animal size, which may have been because of the narrow weight range of test animals biasing the results. These results suggest that industry standard type abalone waste lacks sufficient energy to meet the metabolic requirements of mature sea cucumbers but that growing juveniles on these wastes appears to be feasible and warrants further investigation.  相似文献   

20.
The viability of placing abalones (Haliotis discus hannai), sea cucumbers (Apostichopus japonicas) and rockfish (Sebastes schlegeli) in a polyculture system, the effect of this mixed species group on the system's nitrogen (N) and phosphorous (P) budgets, and the growth and food intake of the organisms in the system were examined using a recirculating aquaculture system. Four replicates were set up for each of three treatment groups (abalone only (C), abalone‐sea cucumber (AS) and abalone‐sea cucumber‐rockfish (ASF)) with an experimental period of 60 d. Compared with the C group, in the AS group the abalone survival rate and specific growth rate (SGR) of body weight increased and the harvested abalones from the polyculture system became the main source of N and P output of the polyculture system. However, the N and P output in the water layer did not differ significantly from that in the C group (p > 0.05), and the N utilization rate was significantly higher than that in the C and ASF groups (p < 0.05). Compared with the AS group, in the ASF treatment the SGR of body weight as well as the protease and amylase activities of sea cucumbers were significantly higher (p < 0.05), the water layer and faeces became the main sources of N and P output in the system. These results showed that the AS polyculture mode significantly improved the N and P utilization rates in the system and led to increased aquaculture production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号