首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

2.
This study evaluated weaning success of California halibut, Paralichthys californicus, larvae onto a microdiet at various stages of development utilizing growth, survival and digestive enzyme activity. Weaning onto a microdiet was evaluated at 16, 26, 36 and 46 days posthatch (dph). Alkaline and acid proteases and leucine aminopeptidase activities were measured after weaning and compared between the weaned treatment and Artemia‐fed controls. Survival was significantly lower in the microdiet‐fed treatments compared to the control groups. Growth was significantly reduced in all weaning treatments compared to the control, except for the 46 dph group. No differences in enzyme activities were detected between treatment and diet at 16 and 26 dph; however, activities were higher for the microdiet‐fed larvae at 36 and 46 dph. This study demonstrates that California halibut larvae possess a differentiated and effective digestive system early in development and can be weaned with relative success (>40% survival) before completion of the metamorphosis (i.e., 36 dph). The lack of weaning success at an early date cannot be entirely because of the absence of a functional stomach but could be related to, among other factors, the low‐microdiet ingestion rates observed and higher leaching of smaller microdiets.  相似文献   

3.
Systemic granulomatosis is the most frequent disease in juvenile and adult meagre, but studies regarding the first appearance of granulomas in larvae do not exist. In order to evaluate this, meagre larvae were fed four different feeding regimes as follows: RS and RO (rotifer enriched with Easy DHA Selco or Ori‐Green from 3 to 30 dph respectively), RAS and RAO (rotifer enriched with Easy DHA Selco or Ori‐Green from 3 to 21 dph and Artemia enriched with Easy DHA Selco or Ori‐Green from 12 to 30 dph respectively). All treatments were also fed with commercial microdiet from 20 to 30 dph. At 30 dph weight, length, specific growth rate and survival were significantly higher in Artemia‐fed larvae, regardless of the enrichment. Microscopic first appearance of granulomas was observed in 20 dph larvae fed RS and RO. At 30 dph granulomas and thiobarbituric acid reactive substances (TBARS), values were significantly higher in RS and RO‐fed larvae than in RAS and RAO‐fed larvae. The results showed that granulomas first appeared in meagre larvae at 20 dph when fed rotifers only. Conversely, a reduced appearance of granulomas and lipid peroxidation occurs when Artemia is included in the feeding sequence reinforcing the hypothesis of a nutritional origin of the systemic granulomatosis.  相似文献   

4.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

5.
Weaning marine fish larvae from live prey to a dry microdiet is an important step towards optimizing the commercial production, but early weaning is constrained by the lack of sufficient digestive enzymes at first feeding. This study quantified the activity of five digestive enzymes throughout the larval period of pigfish (Orthopristis chrysoptera [L.]) to assess ontogenetic changes in digestive abilities, and then trials were conducted that determined the optimal time for weaning. The activity of all digestive enzymes was low or undetectable at first feeding (3 days post hatching, dph; 2.5 mm standard length, SL). A substantial increase in activity occurred at 5.7 mm SL (17 dph), 6.9 mm SL (21 dph), 7.7 mm SL (23 dph), 8.4 mm SL (25 dph) and 11.2 mm SL (30 dph) for bile salt‐dependent lipase, trypsin, chymotrypsin, amylase and acid protease respectively. During the weaning experiment, larvae were co‐fed live prey and microdiet beginning 15 dph (4.8 mm SL). Live prey was withdrawn from the diet at 24, 28, 32 or 36 dph, with the control receiving live prey and microdiet throughout (to 43 dph). There were no significant differences in mean final SL among treatments, but survival was significantly lower when larvae were weaned at 24 dph compared to 32–43 dph. Based on the digestive enzyme activity and survival, weaning larval pigfish at 32 dph (11.7 mm SL) when reared at 24°C is recommended.  相似文献   

6.
Mulloway (Argyrosomus japonicus) is an emerging aquaculture species in Australia, but there is a need to improve the production technology and lower costs, including those associated with larval rearing and live feeds. Three experiments were conducted to determine appropriate weaning strategies from live feeds, rotifers (Brachionus plicatilis) and Artemia, to cheaper formulated pellet diets. Experiment 1 examined the effects of feeding Artemia at different levels [0%, 50% or 100% ration of Artemia fed from 18 days after hatching (dah); based on current hatchery protocols] and a pellet diet from two larval ages (14 or 23 dah). In addition, rotifers were supplied to larvae in all treatments for the duration of the experiment (14–29 dah), at which time all larvae were successfully weaned onto the pellet diet. No significant (P>0.05) differences existed between the growth of fish fed a 50% and 100% ration of Artemia; however, fish fed a 0% ration of Artemia had significantly (P<0.05) reduced growth. The time of pellet introduction had no significant (P>0.05) effects on the growth of larvae. Experiments 2 and 3 were designed to determine the size [total length (TL), mm] at which mulloway larvae selected Artemia equally or in preference to rotifers, and pellet (400 μm) equally or in preference to Artemia respectively. Each day, larvae were transferred from a holding tank to experimental vessels and provided with rotifers (2 mL?1), Artemia (2 mL?1) or a combination of rotifers (1 mL?1) and Artemia (1 mL?1) (Experiment 2), and Artemia (2 mL?1), a pellet diet or a combination of Artemia (1 mL?1) and a pellet diet that was broadcast every 15 min (Experiment 3). After 1 h, a sub‐sample of larvae was randomly selected from each replicate vessel (n=5) and the gut contents were examined under a light microscope. Mulloway larvae began selecting Artemia equally to rotifers at 5.2 ± 0.5 mm TL and selected pellets equally to Artemia at 10.6 ± 1.8 mm TL. Our results have led to the establishment of weaning protocols for larval mulloway, which optimize larval growth while reducing feed cost by minimizing the amount of Artemia used during production.  相似文献   

7.
The digestive tract of many marine fish larvae undergoes numerous morphological and functional changes during ontogeny that can substantially influence larval survival under culture conditions. Increasing our knowledge of the digestive capacity and nutritional requirements of the larvae of new candidate species for aquaculture will aid in the development of optimal feeding protocols and greatly improve production under hatchery conditions. In this study, we assess the proteolytic capacity of California halibut (Paralichthys californicus) larvae using biochemical and histological analyses. Newly hatched larvae were reared in a semiclosed recirculating system and fed with highly unsaturated fatty acid (HUFA)–enriched rotifers from hatching until 19 d posthatch (dph) and HUFA‐enriched Artemia nauplii thereafter. Total and specific activity of trypsin and leucine‐aminopeptidase (LAP) and acid and alkaline protease activities were assessed throughout development using spectrophotometric techniques. Trypsin‐like activity and LAP and alkaline protease activities were detected shortly after hatching and before the opening of the mouth. Acid protease activity was not detected until 36–40 dph, concomitant with the development of the gastric glands. The specific activity of trypsin and LAP showed two distinct peaks at 8 and 20 dph. The second peak coincided with the shift from rotifers to Artemia. Hence, newly hatched California halibut larvae possess alkaline proteolytic activity before first feeding. Based on the digestive capacity evaluated in this study and the timing of the development of the functional stomach, we propose that California halibut can be adequately weaned to formulated microdiets around 36 dph.  相似文献   

8.
The effects of two weaning diets and different weaning protocols on growth, survival, skeletal deformity and gut morphology of Atlantic cod larvae were studied in four groups from 16 to 45 days posthatch (dph). Cod larvae in groups 1 (early weaning with control diet) and 2 (early weaning with experimental diet) were used to evaluate the effects of different polar lipid content of weaning diets on larval and juvenile performance. Cod larvae in groups 2, 3 (early weaning with experimental diet + cofeeding with Artemia) and 4 (earlier weaning with experimental diet and earlier cofeeding with Artemia) were used to evaluate the effects of early introduction of dry diet and Artemia. From 45 to 170 dph, cod juveniles from all four groups were reared using a standard feeding protocol. No significant differences in growth, survival, deformities and gut morphology were found between cod larvae and juveniles from groups 1 and 2. Cod larvae fed on cofeeding regime with Artemia nauplii (groups 3 and 4) were bigger and had lower frequencies of jaw and neck deformities and higher foregut microvillus circumference than cod larvae from group 2. Our results demonstrate the importance of proper weaning protocols in producing better quality cod juveniles.  相似文献   

9.
The tongue sole Cynoglossus semilaevis, an inshore fish in China, has showed great potential in aquaculture recently. However, poor survival was recorded during the period of weaning from live Artemia to artificial diets. In this paper, the influence of co‐feeding larvae with live and inert diet on weaning performance was described. The C. semilaevis larvae were reared at 21 ± 1 °C and fed four different feeding regimes from 6 days post‐hatching (dph): A, Artemia (10 individuals mL?1); B, Artemia (5 individuals mL?1); C, mixed diet (10 Artemia individuals mL?1 and 12 mg L?1 inert diet); and D, mixed diet (5 Artemia individuals mL?1 and 12 mg L?1 inert diet). Rotifers were also supplied in all cases during the first days of feeding. Mixed diets of commercial formulated feed and live prey (rotifers and Artemia) allowed larvae to complete metamorphosis, achieving similar specific growth rate (SGR) (18.5 ± 1.4% and 18.7 ± 1.6%) and survival (40 ± 7.6% and 48.5 ± 6.8%) compared with larvae fed on live feed alone (SGR of 18.3 ± 1.2%, 19.3 ± 1.9% and survival of 41.2 ± 11.3%, 38 ± 4.9%). However, in metamorphosed fish, when live feed was withdrawn on 31 dph, there was significant difference (P < 0.05) in survival and growth among treatments. Metamorphosed fish, previously fed mixture diets during larval stages, had similar survival (62.1 ± 7.6% and 62.8 ± 3.9% for regimes C and D, respectively) but higher than that obtained for fish that previously fed on live feed (49.3 ± 2% and 42.1 ± 3.9% for regimes A and B, respectively) after weaning (day 60). The SGR of weaned fish previously fed live feed was similar (3.1 ± 0.6% and 2.92 ± 0.6% for regimes A and B, respectively) but lower than that recorded for fish that was fed from day 6 to day 30 on the mixed diet (4.5 ± 1.1% and 4.9 ± 0.3% for regimes C and D, respectively). It is suggested that weaning of C. semilaevis from early development would appear to be feasible and larval co‐feeding improves growth and survival.  相似文献   

10.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

11.
In hatcheries, meagre Argyrosomus regius larvae still depend on an adequate supply of rotifers and Artemia, as no artificial diet can totally fulfil their nutritional requirements. However, production of live feed is highly expensive and demands intensive labour and specific facilities. This study investigated the effect of a dietary regime without the use of rotifers, to simplify the meagre larval rearing protocol. Two feeding treatments (T1 & T2) are compared to investigate their effects on survival and growth of meagre larvae. In T1, larvae were fed rotifers from 2 to 5 days post hatch (dph), and Artemia from 4 to 15 dph. In T2, larvae were kept under dark conditions and fed Artemia from 6 to 15 dph. Standard larval length (SL) was significantly higher in T1 (p < .01) until 8 dph in comparison with larvae reared initially without rotifers. No significant difference in SL was found among treatments (= .187) at 15 dph. Significant difference was found among treatments in survival rate at 15 dph (p < .003). The survival rate observed at 15 dph in T2 (30 ± 4.2%) represents an important finding, although the highest survival rate was observed in T1 (45.0 ± 3.4%). This study showed that it is possible to conduct larval rearing of meagre without using rotifers. Nevertheless, further research efforts are still needed to improve these results in comparison with the common larval rearing protocol.  相似文献   

12.
The study investigated the combined effect of weaning from live feed to a commercial dry pellet at 10, 15, 20, 25 or 30 days posthatching (dph) and co‐feeding for 1, 3 or 6 days on survival and growth of Coregonus peled larvae. Additional groups fed only live Artemia sp. nauplii (ART), and only Biomar LARVIVA ProWean 100 (DRY) were included. A final survival rate of 66.4%–85.5% was observed in groups weaned after 20 dph. Final body weight (BW) and total length (TL) were significantly lower in groups weaned at 10 and 15 dph, regardless of the duration of co‐feeding. Larvae reached 29–37 mg BW and TL of 17.7–19.0 mm in groups weaned at 20, 25 and 30 dph. The recommended minimum duration of feeding with live food, based on these results, is 20 days. Based on the significantly higher yield of larvae weaned after 20 dph irrespective of co‐feeding duration, it can be concluded that abrupt weaning to dry food after 20 days of feeding with live prey can provide adequate production while reducing the effort and costs associated with live feed.  相似文献   

13.
Two groups of Senegal sole (Solea senegalensis) larvae were cultured. One used rotifers for the first 10 days after hatching (dph) and enriched Artemia metanauplii from 6 to 30 dph and the other without rotifers, using enriched Artemia metanauplii as the sole food source. The quantity of metanauplii used was the same (group A), twice (group A2) and three times (group A3) the quantity of live prey (in dry weight) of the group fed with rotifers (group R). At the end of the experiment, the growth, in terms of total length and individual dry weight was significantly higher for the larvae on group A2 whilst rotifer fed larvae (R) showed the poorest results. Eye migration was also delayed by approximately 2 days in the group R. No significant differences were found in survival rates. The influence of diet on Senegal sole metamorphosis and its relationship with the size rather than the age of the fish are discussed.  相似文献   

14.
To determine the optimum time at which to wean Scylla serrata larvae from rotifers onto Artemia two experiments were conducted, approximately 1 month apart, using larvae from two different female crabs. In the first experiment, the larvae in three treatment groups, with nine replicates each, were fed rotifers for the first 8 days after hatching. Artemia were introduced on days after hatch (DAH) 0 – during the first zoeal instar (treatment R + A); on DAH 4 – during the second zoeal instar (treatment R4A); on DAH 8 – during the third zoeal instar (treatment R8A). In a control (ROT) larvae were fed with rotifers exclusively for 18 days until the completion of metamorphosis to megalopa. In the second experiment, the same four feeding schedules as in experiment 1 were used with an additional group of larvae (treatment AC) that were fed only on Artemia throughout the rearing period. Similar results were recorded in the two experiments. Larvae in treatments R + A and R4A performed significantly better than those in treatments R8A, ROT and AC. This was particularly evident when examining the proportion of zoeae which successfully completed metamorphosis to megalopa. Poor performance of larvae in treatments AC and ROT implied that rotifers are needed as a first food, but that rotifers alone do not fill the nutritional requirements of S. serrata larvae. Poor performance of larvae in treatment R8A suggested that the diet should be supplemented with Artemia before the end of the zoea 3 stage.  相似文献   

15.
A feeding protocol was developed for red drum larvae based on combining a commercial microparticulate diet (Kyowa Fry Feed) with live prey (rotifers) in a closed, water reuse system. In five trials, growth and survival were measured on larvae reared on a combination of live and microdiet for 1–5 d and then microdiet alone. Results in each trial were compared to control larvae reared on live rotifers Brachionus plicatilis and brine shrimp nauplii Artemia salinas. The most satisfactory combination was feeding live food and microdiet together for the first five days and then completely discontinuing live prey, eliminating the need to feed brine shrimp to the larvae. Growth rates of larvae fed progressively larger sizes of the microdiet were as good as larvae reared on live prey. Both groups metamorphosed to the juvenile stage at less than one month. Survival rates on the five day live food and microdiet combination were a remarkable 60% from egg to the juvenile stage. The successful weaning of red drum to microdiets paves the way to produce a semipurified diet to test nutrient requirements of larval fish.  相似文献   

16.
Leopard coral grouper, Plectropomus leopardus are a heavily exploited, high-value fish commonly found in the Asian live reef food fish trade. In past decades, many attempts at the mass culture of various grouper species have been undertaken; however, their small mouth gape at first feed has resulted in very low survival when using traditional live feeds such as rotifers. The use of wild caught or extensively cultured copepods has yielded potentially promising increases in survival and growth, but overall survival to the juvenile stage remains low, making mass culture currently impractical. The current study sought to build on past developments in grouper culture and recent advancements in copepod culture technology by observing how growth and survival were influenced by the addition of intensively cultured copepods to the early diet of P. leopardus larvae. Six tanks of larvae, three replicates per treatment, were fed either eggs and nauplii of the calanoid copepod Parvocalanus crassirostris, at a starting density of 5 mL−1, and the rotifer Brachionus rotundiformis, at a starting density of 10 mL−1, or were fed only B. rotundiformis, at a density of 15 mL−1, starting on the evening of 2 days post-hatch (dph) and continuing until 9 dph. After this initial period, all larvae were fed the same diet of rotifers, Artemia, and dry feed until the cessation of the trial at 21 dph. Larvae fed P. crassirostris in addition to rotifers had a significantly higher survival, 9.9 versus 0.5%, than those fed only rotifers. Growth was also significantly enhanced in larvae offered copepods. Larvae only fed rotifers were, on average, 1.5 mm shorter at 21 dph than those that had been fed copepods. More rapid development and the earlier onset of flexion were also noted in the larvae that were offered copepods. The use of intensively cultured copepods, in this study, increased survival tenfold over previous studies, with P. leopardus larvae fed wild-caught copepods. The application of intensively cultured copepods to the early diet of P. leopardus, along with future research to evaluate late-stage mortality issues, may facilitate commercial production of this species.  相似文献   

17.
To optimize Senegalese sole‐weaning strategies, three experiments were performed. The first trial tested four weaning strategies with a 10 mg sole. Artemia‐fed sole grew threefold less than fish fed an inert diet. Sudden weaning (abrupt change from Artemia to inert diet) and weaning with co‐feeding produced larger sole than did a late weaning treatment; delayed weaning negatively affected fish growth. In the second experiment, the digestive capacity of early‐weaned 1, 2 and 4 mg sole was investigated. The highest growth was observed in sole weaned at 4 mg. Digestive enzyme profiles suggest that sole have an adaptation period to inert diets, with reduced feed intake. This adaptation period is inversely proportional to post‐larvae weight. The third experiment examined weaning with co‐feeding at different weights (2, 5 and 11 mg). These studies demonstrate that sole of 5–10 mg can be weaned, with high survival rates. On the basis of the digestive enzyme profiles, the early introduction of inert diets in co‐feeding with Artemia seems to affect intestinal processes in smaller postlarvae. This study also suggests that trypsin and alkaline phosphatase may be used as indicators of nutritional status in sole of <5 mg.  相似文献   

18.
Taurine is an essential or conditionally essential nutrient for many species of marine fish, especially during early development. There is growing evidence that marine fish larvae benefit from taurine‐enriched rotifers; however, it is unknown if larvae benefit from taurine‐enriched Artemia. We investigated the effects of taurine‐enriched rotifers (Brachionus plicatilis) and Artemia franciscana on the growth and whole‐body taurine concentrations of California yellowtail (Seriola lalandi; CYT) larvae. The approach used in this study was to encapsulate taurine within microparticles (liposomes), which were then fed to rotifers and Artemia. We found that feeding taurine liposomes to rotifers and Artemia resulted in taurine concentrations in these prey species that were similar to or above those previously reported in copepods. At the end of the rotifer phase, CYT larvae fed taurine‐enriched rotifers showed increased growth (final dry weights; DW) and had higher whole body taurine concentrations when compared to larvae fed unenriched rotifers. At the end of the Artemia phase, CYT whole body taurine concentrations varied among dietary treatments. Larval lengths and DWs were not significantly different among treatments at the end of the Artemia phase, suggesting that the taurine concentrations of unenriched Artemia were sufficient to support the growth of CYT larvae.  相似文献   

19.
High mortality frequently occurs in larval mass production of Korean rockfish, Sebastes schlegeli Hilgendorf. Nutritional deficiencies in live feeds, rotifers and Artemia nauplii, fed to larvae could be a reason. A series of experiments was carried out to evaluate the effect of nutritional enrichment of live feeds by ω‐yeast, Spirulina powder and Super SelcoTM on survival and growth rates in rockfish larvae. Preference of rockfish larvae for the live feeds was determined by analysis of stomach contents. In addition, the effect of green water produced by the use of Chlorella ellipsoidea and Spirulina powder on the growth performance of larvae was evaluated. Larvae fed rotifers nutritionally enriched with Super Selco showed significantly higher survival rates than those fed rotifers enriched with ω‐yeast. Larvae fed rotifers that were nutritionally enriched with both Super Selco and Spirulina together exhibited improved growth and survival rates. Larvae fed Artemia nauplii nutritionally enriched with Spirulina powder showed significantly higher survival than larvae fed Artemia nauplii without enrichment. When larvae were fed rotifers, Artemia nauplii or the mixture of rotifers and Artemia nauplii, the second and last group showed significantly higher survival than the first group. Fatty acid composition in live feeds was improved by enrichment of ω‐yeast and larvae fed this feed showed higher survival and growth rates compared with larvae fed non‐enriched feeds. No positive effect of green water in the tank produced with C. ellipsoidea or Spirulina powder was observed on survival and growth rates for larvae fed nutritionally enriched rotifers with Super Selco and Spirulina powder. However, when the larvae were fed Artemia nauplii that were nutritionally enriched with ω‐yeast and Spirulina powder, green water obtained by adding Spirulina powder to the tanks resulted in significantly higher growth rates of larvae than was obtained by adding C. ellipsoidea.  相似文献   

20.
The purpose of this experiment has been to evaluate the suitability of commercially available early-weaning microdiets (MDs) for the production of sea bream early juveniles and in comparison with late-weaning protocols already in use by Hellenic marine fish hatcheries. Four sea bream experimental groups were allocated in rearing tanks of a commercial Hellenic marine fish hatchery. Each group represented a different protocol (A, B, CA, and CB) based on the combination of two different early-weaning MDs (A and B) and a late-weaning diet (C). In addition, the late-weaning protocols have received Artemia instar II only and not Artemia instar I. In protocol A, Artemia instar I first feeding and the early-weaning diet A were administered at 17 days post-hatch (17 dph). In protocol B, Artemia instar I first feeding started at 15 dph and the early-weaning diet B was administered at 18 dph. In the C protocols, Artemia instar II first feeding started at 20 dph and the early-weaning diets (A or B) were administered at 25 dph. All protocols have received the late-weaning diet C only after the 50th dph. The experiment lasted for 65 days. By the end of the experiment, early-weaning protocol A and late-weaning protocol CB had similar wet weights, but still lower to the wet weights recorded for the late-weaning protocol CA. These results cannot be explained solely by the nutritional profile of each weaning diet. The larval fatty acid profile of each protocol and at various time intervals reveals the importance that the succession of Artemia, rotifers, and MDs has for each protocol and not just the nutritional profile of the weaning diets, per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号