首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of previous P additions on commonly used sorption parameters was studied using four alkaline-calcareous soils of Greece, two Vertisols and two Entisols. Solution concentration and buffering capacity indices were significantly affected while sorption curves of the quantity of P removed from the solution (x/m) against final P solution concentration (c) were shifted to the right, towards the higher c concentration values. Different buffering indices (e.g. the slope of the Freundlich equation, the slope of the semi-logarithmic sorption curve of x/m against log c, the slope of the linear portion of the high c concentration range) showed an increasing trend with increasing previous P additions to the soils, with the exception of the slope of the tangent of the Freundlich equation at c = 1 μg P/ml. However, correction for the quantity of exchangeable P already present in the soil (q), resulted in an increasing trend for this parameter as well, while obviously it did not have any effect on the slopes of the linear portions of the sorption curves. Chemical changes, as for example the slow formation of insoluble Ca–P salts, could possibly explain the increased capacity of previously fertilized alkaline-calcareous soils to remove P from the experimental equilibration solution suggested by the increasing trend in the buffering indices of the present work. At any case, this effect should be taken into account, especially in studies where sorption parameters are related to various soil-plant characteristics with respect to P.  相似文献   

2.
Abstract

In nineteen surface horizons of red Mediterranean soils from various locations of Greece, phosphorus (P) sorption experiments were conducted and the sorption characteristics were studied in relation to soil properties. Phosphate sorption data were fitted both to the Langmuir and Freundlich equations. From these equations, the following P sorption parameters were determined from the Freundlich equation, X = ACn, the parameters A (the phosphate sorbed at C = 1 mg P/L), n (the P sorption intensity), the P sorption index (PS = X/log C) and maximum P sorption (Xmfr). From the Langmuir equation, C/X = 1/KXm + C/Xm, the parameters K (showing the bonding energy), maximum P sorption (Xmla), the quantity of P adsorbed at a standard concentration of 0.2 mg P/L (P0.2), and P maximum buffering capacity (PMBC). The Freundlich parameter A was strongly correlated to the clay and sesquioxides ("free”; iron and aluminum oxides and amorphous iron oxides) content. Seventy‐four percent of the variance of this parameter was explained by clay and “free”; iron (Fe) content. The Freundlich parameter n was significantly correlated with pH and amorphous iron oxides content, while 52% of its variance was explained by amorphous Fe and dithionite extrac‐table aluminum (Al). The P sorption maxima calculated from the Freundlich equation were in general lower than those calculated by the Langmuir equation. Both these parameters were strongly correlated with clay and more slightly with sesquioxides content. About 50% of their variance was explained by clay content of the soils. The P sorption index was strongly correlated with the clay content and less strongly with dithionite‐extractable Fe and Al. The P‐buffering capacity calculated from the data of Langmuir equation was also strongly correlated with these two parameters. In addition, clay content and dithionite‐extractable Fe and Al were well correlated to the amounts of P required to obtain an equilibrium concentration of 0.2 mg P/L while 61% of the variation of this parameter was explained by the clay and the dithionite‐extractable Fe content. From these findings, it seems that for the red Mediterranean soils from Greece, P sorption is affected by clay content and iron and aluminum oxide contents.  相似文献   

3.
Phosphate adsorption of calcareous and non calcareous alkaline Greek soils was studied using the Freundlich Equation modified as to take also into account q, the quantity of phosphorus (P) already existing in these soils. Relatively high amounts of phosphate added were adsorbed, with a minimum of 44.5% at the highest level of P addition, being 600 μg P/g soil. The fit of the modified Freundlich Equation to the experimental data was best, when the values of bicarbonate extractable P were assigned to q, in comparison to both lower and higher values, Correction for q as above, resulted also in a statistically significant positive relationship between the Freundlich coefficient a, a capacity term with respect to P adsorption, and OM of the soils studied.  相似文献   

4.
Understanding the role of organic acids on phosphorus (P) sorption capacity of soils is very important for its economic and friendly management. Combining P application with low-molecular weight organic acids could result in its higher plant availability for prolonged time. Therefore, citric and oxalic acid (at the rate of 1.0 mM kg?1 soil) were evaluated for their effect on P sorption capacity and its plant availability in two different textured calcareous soils. Organic acids decreased P sorption capacity and organic carbon partition coefficient (Koc) whereas increased Gibbs free energy (ΔG) of P. Organic-acid-treated soils required lesser quantity of P fertilizer to produce soil solution P concentration optimum for plant growth (external P requirement [EPR0.2]), that is, 0.2 mg L?1. Citric acid was efficient than oxalic acid in the above effects. P sorption parameters of Freundlich model were negatively correlated with lime potential and ΔG whereas had positive correlation (< 0.05) with EPR0.2 and Koc. Incubation with oxalic acid increased available P in loamy sand and loam soil by 20% and 30%, respectively. Thus, organic acids could help reduce application rate of P fertilizer through lowering its adsorption in highly P-fixing soils without compromise on yield.  相似文献   

5.
Vertisols are important cropping soils in tropical and subtropical areas, but in many regions, decades of cropping has substantially reduced concentrations of plant-available phosphorus (P), especially in the subsoil layers. Phosphorus behaviour in P-depleted Vertisols has received comparatively little attention, and the availability of P following the addition of inorganic P fertilisers at different concentrations is poorly understood. In this study, we evaluated short-term P sorption and desorption behaviour in cropped Vertisols in relation to specific soil physical and chemical properties. We collected the surface and subsurface of 15 Australian soils with a broad range of physical and chemical properties, comprising nine Vertisols, three Ferralsols, two Lixisols and one Calcisol. For each soil, we generated sorption and desorption curves (fitted with a Freundlich equation), determined soil physical and chemical properties likely to influence P sorption and evaluated the relationships between the measured soil properties and the Freundlich equation sorption coefficients. The P sorption curves differed drastically between soils, with the sorption equation coefficients (aS × b) significantly correlated with the P buffering index (PBI) and clay content. Clay content itself was correlated with citrate-extractable Fe and Al oxides and BET surface area. Vertisols formed on basaltic parent materials had greater Fe and Al oxide concentrations, resulting in an overall greater P sorption capacity. Sorption and desorption hysteresis were mostly small. The reacting materials in these soils probably had limited ability to continue to react with P. The Vertisols differed in their capacity to replenish P in the soil solution by desorbing different proportions of previously sorbed P, although the proportion of desorbable P generally increased with greater concentrations of sorbed P. These results suggest that for fertiliser management in these soils, smaller volumes of P enrichment combined with higher P concentrations may result in a greater P recovery by the crop.  相似文献   

6.
A. K. DOLUI  S. S. ROY 《土壤圈》2005,15(5):611-619
Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradients in physical and chemical properties were studied to relate phosphate sorption and desorption to soil properties. From the P isotherm curve, the standard P requirement (SPR) of the soils was determined. Phosphate sorption data were also fitted both to the Langmuir and Freundlich Equations. The mean sorption maximum values for three different soil series were: Bastar 〉 Geedam 〉 Mosodi. The fraction of added phosphate sorbed for the 3 series followed this same trend as did SPR; the phosphate sorption maximum and the maximum phosphate buffering capacity, which were estimated by the Langmuir isotherm; and the Freundlich constant 1/n. However, phosphate desorption, as well as the maximum recovery percent did not follow this order. The phosphate affinity constant (K) was also different following the same progression for the 3 soil series as the Freundlich constant K', which measured sorption strength. Meanwhile, an inverse order existed for K and K' versus the percent desorbed relative to the sorbed as well as the maximum recovery percent. In addition, significant correlation coefficients among sorption parameters of P and soil factors were found.  相似文献   

7.
The sorption and desorption of phosphorus (P) from eroding soil particles in land runoff are important processes contributing to agriculturally‐driven eutrophication. We investigated the P‐exchange properties and related chemical characteristics of contrasting European agricultural soils and sediment material eroded from them under indoor (small‐scale) and outdoor (larger‐scale) rainfall simulations. Quantity‐intensity (Q/I) relationships revealed large variation in equilibrium P concentrations at zero net P sorption (EPC0) (0–10.3 mg l−1) and instantly labile P (−Q0, the amount of P to be desorbed to obtain a P equilibrium concentration of 0 mg l−1) (2–75 mg kg−1), both correlating closely with Al‐bound P and the P saturation degree of Al oxides (DPSAlox). Maximum P sorption (Qmax) (43–515 mg kg−1) also correlated most closely with Alox. The indoor and outdoor rainfall simulations produced sediments with different P sorption properties: in the indoor simulation (less kinetic energy, constant slope), the sediments had larger EPC0 values, and usually larger −Q0 values, than the sediments in the outdoor simulation (greater kinetic energy, variable slopes). Furthermore, the P exchange properties of the sediments differed from those of the bulk soil depending on the enrichment of soil P‐sorption components (Fe/Al oxides, clay). The outdoor simulation indicated that sites with gentle slopes produced sediments that were more enriched with Alox, Feox, Mnox and organic C than those with steeper slopes. In this study, when the bulk soil had an initial EPC0 greater than 1.3 mg l−1, the outdoor rainfall simulation produced sediment with smaller EPC0 and vice versa, indicating that, depending on the P status of the bulk soil, the sediment material was acting as source or sink for P during transport. However, on the basis of their EPC0 values, most eroding sediments might be expected to desorb, rather than adsorb, P when entering surface water.  相似文献   

8.
Twenty‐five pasture soils were sampled from high‐rainfall zones of southeastern Australia to examine relationships between soil properties, and between soil properties and P buffering capacity (PBC) measures. Correlations between PBC values and soil properties were generally poor, with the exception of oxalate‐extractable Al (Alox) (r ≥ 0.97). Predictions of PBC were further improved when clay, as well as Alox, was included in a linear regression model (r2 ≥ 0.98). When Alox and oxalate‐extractable Fe were excluded from the modelling exercise, a more complex three‐term linear regression model, including pHH2O, exchangeable H and cation exchange capacity, adequately fitted both PBC values of the 25 soils examined in this study (r2 ≥ 0.76). However, the Alox, Alox plus clay and the three‐term models gave poor predictions of the PBC values when the models were validated using 28 independent soils. These results emphasize the importance of model validation, because predictive models based on soil properties were not robust when tested across a broader range of soil types. In comparison, direct measures of PBC, such as single‐point P sorption measures, are more practical and robust methods of estimating PBC for Australian soils.  相似文献   

9.
The dependence of runoff dissolved reactive phosphorus (DRP) loss on soil test P or rapid estimations of degree of P saturation (DPS) often varies with soil types. It is not clear whether the soil‐specific nature of runoff DRP versus DPS is due to the different sorption characteristics of individual soils or the inability of these rapid DPS estimates to accurately reflect the actual soil P saturation status. This study aimed to assess environmental measures of soil P that could serve as reliable predictors of runoff DRP concentration by using soils collected from Ontario, Canada, that cover a range of chemical and physical properties. A P sorption study was conducted using the Langmuir equation  to describe amount of P sorbed or desorbed by the soil (Qs, mg/kg) versus equilibrium P concentration (C, mg/L) in solution, where Qmax is P sorption maximum (mg/kg), k represents P sorption strength (L/mg), and Q0 (mg/kg) is the P sorbed to soil prior to analysis. Runoff DRP concentration increased linearly with increasing DPSsorp (i.e. the ratio of (Q0 + QD)/Qmax) following a common slope value amongst soil types, while the P buffering capacity (PBC0) at C = C0 yielded a common change point, below which runoff DRP concentration decreased greatly with increasing PBC0 compared to that above the change point, where C0 and QD represent the equilibrium P concentration and amount of P desorbed, respectively. Both DPSsorp and PBC0 showed great promises as indicators of runoff DRP concentration.  相似文献   

10.
上海土壤磷的吸附特性及缓冲性能的研究   总被引:8,自引:0,他引:8  
本文以上海土壤为对象,研究选定了土壤磷等温吸附试验条件为:水土比10,平衡时间6天,控温25℃,磷加入量为100,200,400,600μgP/g土,溶液基质为0.01M CaCl2。磷缓冲能力试验条件为:平衡时间2天,磷加入量为20,40,100,200μgP/g土。根据Freundlich, Tempkin和Langmuir方程计算的土壤吸附指标与土壤类型及土壤性质有密切关系,是土壤磷素肥力的重要指标。反映土壤缓冲能力的“磷肥指标”与土壤有机质、粘粒、活性铝及pH值相关较好。上海几种主要土壤中以青紫泥的最大吸附量(Xm),0.2ppm P吸附量和“磷肥指标”为最高,其次为青黄土,沟干泥和黄泥头,最小为夹沙泥。应用磷吸附指标与“磷肥指标”来预测土壤需磷量,初步试验是可行的,但实际应用还需进一步试验研究。  相似文献   

11.
Abstract

Sorption of trace quantities of Cd in four soils of different chemical and mineralogical properties, was studied. Initial Cd concentrations were between 15 to 150 μg. 1?1. The sorption isotherms were linear and had a positive intercept in three of the soils, indicating a constant partition‐high affinity sorption isotherm (Giles et. al6). The data also followed the Freundlich sorption isotherm, and the Freundlich K parameter was taken as a measure of the relative affinity of the different soils for the Cd metal sorbed. Cadmium sorbed was extracted by IN‐NH4C1 followed by 0.1N HC1, and the fraction remaining in the soils was considered specifically sorbed Cd. This fraction also followed a linear sorption isotherm, and was around 30% for the four soils studied. The sorption order for the amount of specifically sorbed Cd showed that the Boomer soil (kaolinite‐iron oxides) had the lowest affinity for specific sorption of this metal. This was taken as evidence that kaolinite and iron oxides have a lower capacity for retaining cadmium through specific sorption mechanism(s) than the materials present on the other soils (2:1 layer silicates and humic substances). The existence of specific mecha‐nism(s) responsible by the sorption of trace quantities of Cd in soil solutions has important implications on soil‐plant relationships, Cd mobility in soil profiles and control of Cd activity in soil solutions.  相似文献   

12.
本试验测定了浙江省几种代表性土壤对磷的等温吸持特性。实测值与Frundlich、Langmuir、两项式Langmuir和Temkin方程都很符合,相关系数变化范围在0.919-0.999之间,都达到极显著水平。其中以简单Langmuir等温式与本实验资料最为吻合。从Langmuir方程得到的土壤吸持特性值(k×qm)被认为与土壤供磷特性有关。几种供试样品的(k×qm)值是:针铁矿21100>黄筋泥4218>黄筋泥田991>青紫泥798>粉泥田660>高岭石485>老黄筋泥田423>泥质田298。根据土壤吸持特性值以田菁进行盆栽试验来估算作物磷肥需要量,结果表明,供磷强度0.3ppm P基本能满足田菁早期生长的需要。为使不同土壤达到相同的供磷强度,(k×qm)值大的土壤要求更高的有效磷值。供试土壤的几种磷素指标:E值、Bray1-P值和(NaOH-Na2C2O4)法值对(k×qm)值的变化比较敏感,而EDTA-P和Olsen-P指标对(k×qm)值的变化较为迟钝。  相似文献   

13.
Abstract

Surface horizons from Podzolic and Gleysolic soils were collected in various parts of the province of Quebec, Canada, and equilibrated with various amounts of KH2PO4 in 0.01 M CaCl2 for 48 hours. P sorption data conformed to the linear form of the Langmuir and Freundlich equations. P solubility isotherms showed evidence of hydroxyapatite formation in most samples studied, whereas equilibration solutions of only few samples were saturated with respect to either dicalcium phoshate dihydrate or octocalcium phosphate. These reaction products were associated to soil pH and levels of added phosphate. The average values of the Langmuir sorption maximum for these studied Gleysolic and Podzolic samples were 763 and 1096 μg/g respectively. These values were higher than those obtained by the segmented and modified Freundlich models.

Relationships between the soil characteristics and P sorption parameters were evaluated by regression analysis. Among all variables, oxalate‐extractable Fe plus Al content of the Podzolic samples and the ratio of oxalate—extractable Al to clay of the Gleysolic samples gave the best significant correlation coefficients. Furthermore, soil pH and various ratios such as pyrophosphate‐extractable Fe and Al, oxalate‐extractable Fe and organic matter to clay were found to be significantly correlated only with the P sorption parameters of the Gleysolic samples.  相似文献   

14.
Potassium (K+) directly released from primary K‐bearing minerals can contribute to plant nutrition. The objective of this research was to assess short‐term K+ release and fixation on a range of intensively cropped calcareous soils. Potassium sorption and desorption properties and the contributions of exchangeable‐K+ (EK) and nonexchangeable‐K+ (NEK) pools to K+ dynamics of the soil‐solution system was measured using a modified quantity‐to‐intensity (Q : I) experiment. Release and fixation of K+ were varied among soils. The relation between the change in the amount of NEK during the experiment and the initial constrain was linear, and soil ability for K+ release and fixation (β) for all soils varied from 0.041 to 0.183, indicating that 4% to 18% of added K+ converted to NEK when fixation occurred. The equilibrium potential buffering capacity (PBC) for K+ derived from Q : I experiments had significant correlation (r = 0.75, p < 0.01) with β, indicating that PBC depends not only on exchange properties but also on release and fixation properties. The depleted soils showed higher β value than the other soils, indicating much of the added K+ was converted to NEK in case of positive constraint. The range of the amount of EK which was not in exchange equilibrium with Ca (Emin) in the experimental conditions was large and varied from 0.68 to 9.00 mmol kg–1. On average, Emin amounted to 64% of EK. This fraction of EK may not be available to the plant. The parameters obtained from these short‐term K+ release and fixation experiments can be used in plant nutrition.  相似文献   

15.
ABSTRACT

Evaluation of the plant-available phosphorus (P) in calcareous soils is commonly performed by removing a portion of solid phase P using chemical extractants. Critical soil test values, however, may be affected by variation in sorption and buffering behavior of different soils. The objective of this study was to evaluate the importance of buffering capacity indices to predict P uptake by wheat (Triticum aestivum). Eleven surface soil samples were assayed for a number of P intensity (CaCl2-P) and quantity (Olsen-P, Colwell-P, and Resin-P) factors. Some phosphorus buffering indices were obtained from P sorption equations. A single-point index of buffering was also determined experimentally. In a greenhouse experiment, wheat was grown for 35 and 70 days on the same soils and P uptake was determined. Nonlinear and linear equations described the P sorption data (P < 0.001). Buffering indices derived from these equations were highly correlated with single-point index of capacity. Clay content was the most important soil property affecting the buffering capacity factor. The phosphorus intensity index (CaCl2-P) was weakly related to P uptake (P < 0.05). Among the quantity factors only Resin-P was significantly correlated with P uptake. Buffering indices showed significant but inverse relationships with P uptake only at 70 days harvest (r = ?0.69 to ?0.71; P < 0.05). Combination of intensity or quantity factors with buffering capacity indices, such as intensity/capacity or quantity/capacity indicators, improved considerably the ability to account for variations in P uptake by wheat.  相似文献   

16.
Detailed information about structure and composition of organic sorbents is required to understand their impact on sorption capacity and sorption kinetic of organic pollutants. Therefore, the chemical composition of organic material from 18 geosorbents was investigated by solid‐state 13C nuclear‐magnetic‐resonance (NMR) spectroscopy. Structural parameters such as aromaticity, polarity, and alkyl‐C content were related to the Freundlich sorption exponent (1/n) and the sorption coefficient . The geosorbents included three natural and four combusted coals (carbonaceous material), three Histosols, five mineral soils from Germany containing inputs of technogenic carbonaceous material, derived from industrial activities, and four non‐contaminated mineral soils from Germany. Equilibrium sorption was measured for five hydrophobic organic compounds and analyzed with the solubility‐normalized Freundlich sorption isotherm. With increasing maturation degree, the proportion of polar constituents decreases from the natural soils to the coals. In contrast to the non‐polluted mineral soils, the soils with technogenic input are characterized by high aromaticity and low polarity. A positive correlation between sorption coefficient and aromaticity was found. The Freundlich exponent (1/n) is negatively correlated with the aromaticity, denoting an increase of adsorption processes with increasing aromaticity. Likewise, the contribution of partitioning decreases. This sorption mechanism predominates only if the organic matter in the samples contains a high proportion of polar compounds.  相似文献   

17.
Geochemical sorption and biological demand control phosphorus (P) retention and availability in soils. Sorption and the biota predominantly utilize the same inorganic form of P, from the same soil pool, on the same time scale, and thus are likely to compete for P as it flows through the available pool. In tropical soils, P availability is typically quite low and soil geochemical reactivity can be quite high. We tested whether greater P sorption strength in tropical soils resulted in lower biological uptake of available P. Since the strength of soil sorption and biological demand for P change as ecosystems develop and soils age, we used soils from the two upper horizons from three sites along a 4.1 million-year-old tropical forest chronosequence in the Hawaiian archipelago. We evaluated the strength of geochemical sorption, microbial demand, and the partitioning of added available P into biological versus geochemical soil pools over 48 h using a 32PO4 tracer. Soil sorption strength was high and correlated with soil mineral content. The amount of added phosphate geochemically sorbed versus immobilized by microbes varied more between the organic and mineral soil horizons than among soil ages. Microbial activity was a good predictor of how much available P was partitioned into biological versus geochemical pools across all soils, while sorption capacity was not. This suggests that microbial demand was the predominant control over partitioning of available P despite changes in soil sorption strength.  相似文献   

18.
Abstract

The apparent recovery of applied zinc (Zn) by plants is very low in calcareous soils of Iran because most of it is retained by the soil solids. Subsamples of 24 surface soil (clay 130–530 g kg‐1; pH 7.7–8.4; electrical conductivity 0.63–3.10 dS m‐1; organic matter 6.0–22.0 g kg‐1; cation exchange capacity 8–20 cmol kg‐1; calcium carbonate (CaCO3) equivalent 180–460 g kg‐1) representing 13 soil series in three taxonomic orders were equilibrated with zinc sulphate (ZnSO4) solutions and the amount of Zn disappeared from solution after a 24‐h shaking period was taken as that adsorbed (retained) by the soil solids. The adsorption data were fitted to Freundlich (X=ACB) and Langmuir [X=(K‐bC)/(1+K#lbC)] adsorption isotherms. Backward stepwiseprocedure was used to obtain regression equations with isotherms coefficients as dependent and soil properties as independent variables. Freundlich A and Langmuir K were found to be highly significantly related to pH and clay and increasing as these soil properties increased. But Langmuir b was related only to clay and Freundlich B showed no significant relationship with any of the properties studied. The distribution coefficient (also called maximum buffering capacity), calculated as the product of Langmuir K and b, was also found to be highly significantly related to pH and clay. It is concluded that pH and clay content of calcareous soils are the most influential soil properties in retention of Zn.  相似文献   

19.
Zinc (Zn) sorption curves were established for 11 cultivated sandy soils from central Vietnam. Soil samples (10 g) were equilibrated with 5 mM calcium chloride (CaCl2) solutions (50 mL) at five zinc chloride (ZnCl2) concentrations (0 to 80 mg Zn L–1). The experimental sorption data were fitted with the Freundlich equation. The amounts of Zn sorbed by soil (QZn) at different Zn concentrations in the equilibrium solution (CZn) were closely related to cation exchange capacity (CEC) and pH, that is, to the available exchange sites at given pH values. More specifically, an excellent correlation was found between Zn sorption and exchangeable calcium (Caex), which evidently also depends on CEC and pH. A unique equation was proposed to predict QZn from CZn and Caex in the range of Zn loading covered in our research, that is, from traces to QZn ≈ 60 mg Zn kg–1.  相似文献   

20.
Abstract

Twelve soils with low‐medium phosphorus (P) retention capacities were equilibrated for 3 months with soluble phosphate at a rate of 100 mg P kg‐1 soil. The P sorption properties of these soils both with and without added P were studied, including equilibrium P concentration (EPCo), standard P requirement (SPR), soil P sorption capacity (b), maximum buffer capacity (MBC), and P sorption index (P‐SI). In general, the soils with no added P showed low values of all the above parameters. Oxalate extractable aluminum appeared to be the major responsible element for the control of P sorption in these soils. The addition of P to these soils had a considerable effect on their P sorption properties. The changes in EPCo were well correlated with P sorption index (r=0.80; p≤0.01 ). The EPCo values of the soils with and without added P were closely correlated to bicarbonate extractable P (P0lsen) and calcium chloride extractable P (PCaC12), with r=0.80, and r=0.99 (p≤0.001), respectively. Ninety percent of the variability in EPCo was explained by the corresponding variability in POlsen when a curvilinear relationship was adopted. The P sorption properties examined appear to be useful parameters to assess the environmental impact of soil P on the quality of surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号