首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Electrophoretic (urea SDS–PAGE) and chromatographic (RP–HPLC) analysis was performed on 8 allelic variants of HMW glutenin subunits derived fromTriticum tauschiiand from the D genome of a hexaploid wheat species (Triticum macha) and hexaploid landraces. These subunits had been previously identified using SDS–PAGE. The characterisation revealed that subunits Dy10tand Dy12tfromT. tauschiicould be differentiated from their bread wheat counterparts using both urea SDS–PAGE and RP–HPLC. In the latter case, theT. tauschiiy-type subunits were clearly more hydrophobic than the Dy type subunits of bread wheat. The characterisation also suggested that subunit Dx5t, derived from two separateT. tauschiiaccessions, did not contain the extra cysteine residue characteristic of Dx5 from bread wheat. RFLP analysis of the genes encoding the HMW glutenin subunits of interest suggested that the absence of Dx-type HMW glutenins in two hexaploid landraces was due to lack of expression of their encoding genes. The relationship betweenHindIII DNA fragment size and protein subunit size, as measured by electrophoretic mobility, is examined and discussed. Finally, the solubility properties of a HMW protein designated T1 (derived fromT. tauschiiaccession AUS 18913) suggested that it was not a HMW glutenin subunit as was previously thought. Further studies are needed to clarify the identity of this subunit.  相似文献   

2.
Electrophoretic and reversed phase high performance liquid chromatographic (RP–HPLC) analyses were performed on gluten proteins extracted from flours milled from two different Swedish bread wheat lines; these lines have been reported to possess a novel highMrglutenin subunit controlled by a gene at theGlu-A1locus, referred to as 21*. Although RP–HPLC indicated that subunit 21* has a surface hydrophobocity similar to that of the commonly occurring allelic subunits 1 or 2*, it differs from them in isoelectric point, being more basic when analysed by two dimensional gel electrophoresis (IEF/SDS–PAGE). RP–HPLC separations of highMrglutenin subunits showed the presence of an additional peak, the behaviour of which was similar to that of y-type subunits encoded by genes at theGlu-A1ylocus and present only in wild wheatsT. urartu(AA) orT. dicoccoides(AABB). Based on chromatographic results and on the tight linkage observed with subunit 21*, it is suggested that the additional component (indicated as 21*y), present in the breeding lines analysed, corresponds to the y-type subunit encoded at theGlu-A1locus. Genes encoding the subunits 21* and 21*y were also analysed by polymerase chain reaction (PCR). Contrary to what was observed for the polypeptide itself, the gene corresponding to subunit 21* was similar in size to that encoding subunit 2* and shorter than that corresponding to subunit 1. Moreover, the amplification product corresponding to the active 21*y gene was shorter than that of the allelic inactive gene present in the bread wheat cultivar Cheyenne. As reported for other highMrglutenin subunits, gene size differences observed were due to a different length of the repetitive region. Because cultivated polyploid wheats have been shown to have only the x-type subunit at theGlu-A1locus, it is speculated that the new combination, with both x- and y-type subunits expressed, might have been introgressed during breeding processes from the wild wheat progenitorsT. urartuorT. dicoccoides, which have genotypes expressing both types of subunits.  相似文献   

3.
A large collection of accessions of the wild wheat progenitor Triticum tauschii, the donor of the D genome of Triticum aestivum, was evaluated for the variability of high molecular weight (Mr) glutenin subunits by electrophoretic and chromatographic methods. A large range of allelic variation at theGlu-Dt1 locus was found in this collection and some novel subunits were observed in both x- and y-type glutenin subunits, including x- or y-type null forms. A few accessions showed three bands in the high Mrglutenin subunit region. However, only two subunits were observed when monomeric proteins were removed before SDS-PAGE analysis of polymeric proteins. The presence of monomeric proteins in this region is discussed. Characterisation of these subunits was also carried out by reversed phase-high performance liquid chromatography (RP-HPLC). Very different surface hydrophobicities were observed between x- and y-type subunits and in some cases it was possible to identify glutenin subunits with the same apparent molecular weight but different surface hydrophobicity. Differences in elution times that were detected when the same subunit was either reduced or reduced and alkylated were related to the number of cysteine residues present in each glutenin subunit. The newGlu-Dt1 glutenin subunits have the potential to enhance the genetic variability available for improving the quality of bread wheat (T. aestivum).  相似文献   

4.
HighMrglutenin subunit 20 and its linked y-type subunit, present in the durum wheat cultivar Lira, were purified by preparative reversed-phase high-performance liquid chromatography (RP–HPLC). Amino acid and N-terminal sequence analysis of subunit 20y confirmed that it corresponded to a y-type subunit. Moreover, the number and position of the cysteine residues in subunit 20 were determined by alkylation with the fluorogenic reagent 7-fluoro-4-sulfamoyl-2,1,3,-benzoxadiazole (ABD-F) and subsequent enzymic digestion with trypsin. N-terminal amino acid sequence analysis of the fluorescent peptides showed that subunit 20 had only two cysteine residues, one in the N-terminal region and the other in the C-terminal domain.  相似文献   

5.
小麦贮藏蛋白特性及其遗传转化   总被引:13,自引:7,他引:13  
小麦籽粒贮藏蛋白由醇溶蛋白和谷蛋白组成。醇溶蛋白在组成上以单体形式存在 ,具有高度的异质性和复杂性。它决定小麦面筋的粘性。谷蛋白是由多个亚基组成的高分子聚合体 ,决定面筋的弹性。它可分为低分子量谷蛋白亚基和高分子量谷蛋白亚基 (HMW- GS)。HMW- GS具有相似的分子结构 ,即由中央重复序列、无重复的 N端和 C端组成。HMW- GS对小麦烘烤品质起着决定性作用 ,但因 HMW- GS类型不同而对加工品质的贡献大小各异。许多 HMW- GS基因已被揭示。实践证明 ,利用基因枪法 ,将 HMW- GS基因导入普通小麦的细胞核内 ,能够达到改良小麦烘焙品质的目的。随着分子生物学技术的不断发展 ,可望从营养和加工角度来改良小麦品质的特性  相似文献   

6.
Cloning and functional analysis of high molecular weight wheat glutenin subunit (HMW-GS) 1By8 from Italy durum cultivar Simeto was carried out in this study. All HMW-GS from Simeto were separated and characterized by appropriate electrophoresis methods, reversed-phased high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS). The complete gene encoding 1By8 subunit was amplified by allele-specific PCR primers, including an upstream sequence of 857 bp and an open reading frame (ORF) of 2166 bp encoding a mature protein of 720 amino acid residues. The promoter sequence, containing -300 element (cereal glutenin gene control element) and enhancer was highly conserved among HMW-GS genes. Comparison with the sequence of subunit 1By9 from bread wheat demonstrated 99% identity with the main difference being that the 1By8 subunit possesses an additional insertion of 15 amino acid residues (QYPASQQQPA QGQQG) at position 342 and two residue substitutions at position 78 (leucine/proline) and 442 (arginine/glutamine). The molecular weight differences between MALDI-TOF-MS and deduced amino acid sequence of the coding gene revealed the possibility of some kinds of post-translational modifications present in 1By8 subunit. The protein subunit expressed in Escherichia coli showed a very similar mobility to the endogenous 1By8 of Simeto on SDS-PAGE. The function of the isolated protein on wheat processing quality was determined by 10 g Mixgraph analysis. Results demonstrated that addition of y-type HMW glutenin subunits into the base flour had significant positive effects on main mixing parameters and significant difference in effects were observed among different y-type subunits.  相似文献   

7.
Cloning and functional analysis of high molecular weight wheat glutenin subunit (HMW-GS) 1By8 from Italy durum cultivar Simeto was carried out in this study. All HMW-GS from Simeto were separated and characterized by appropriate electrophoresis methods, reversed-phased high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS). The complete gene encoding 1By8 subunit was amplified by allele-specific PCR primers, including an upstream sequence of 857 bp and an open reading frame (ORF) of 2166 bp encoding a mature protein of 720 amino acid residues. The promoter sequence, containing -300 element (cereal glutenin gene control element) and enhancer was highly conserved among HMW-GS genes. Comparison with the sequence of subunit 1By9 from bread wheat demonstrated 99% identity with the main difference being that the 1By8 subunit possesses an additional insertion of 15 amino acid residues (QYPASQQQPA QGQQG) at position 342 and two residue substitutions at position 78 (leucine/proline) and 442 (arginine/glutamine). The molecular weight differences between MALDI-TOF-MS and deduced amino acid sequence of the coding gene revealed the possibility of some kinds of post-translational modifications present in 1By8 subunit. The protein subunit expressed in Escherichia coli showed a very similar mobility to the endogenous 1By8 of Simeto on SDS-PAGE. The function of the isolated protein on wheat processing quality was determined by 10 g Mixgraph analysis. Results demonstrated that addition of y-type HMW glutenin subunits into the base flour had significant positive effects on main mixing parameters and significant difference in effects were observed among different y-type subunits.  相似文献   

8.
Ten transgenic lines were studied which expressed a transgene encoding HMW subunit 1Ax1 in three elite spring wheat cultivars: Imp, Canon and Cadenza. These lines contained one to five copies of the transgene and the 1Ax1 subunit was expressed as 1–20% of the total glutenin protein. These lines were grown in field trials in a continental, arid climate (Martonvásár, Hungary) over two years (2004, 2005). The expression of the transgenes and their effects on the grain properties were stably inherited over the two years. Significant differences in yield were observed between three of the transgenic lines and the original genotypes, but no differences were found in their adaptiveness. Clear differences were found in the technological and rheological properties of four lines, with all the parameters characterising dough strength and extensibility (GI, W, G, Re, Ext, A) changing significantly. These differences were associated with increases in the ratio of HMW/LMW subunits and decreases in the ratios of 1Dx/1Dy and 1Bx/1By subunits. Two transgenic lines of cv Imp had high over-expression of the 1Ax1 subunit which in one line resulted in an overstrong type of dough, similar to that described previously for lines over-expressing HMW subunit 1Dx5. Transformation of cvs. Canon and Cadenza resulted in two lines with increased dough stability due to the significantly improved gluten quality. It is concluded that significant changes in the structure of the glutenin polymers caused by the altered ratio of x-type to y-type HMW subunits led to the changes in flour functional properties.  相似文献   

9.
The high molecular weight (HMW) glutenin subunits Dtx1.5+Dty10 from Aegilops tauschii are a novel pair of subunits not detected previously in common wheat (Triticum aestivum). The partial DNA sequences of the x-type HMW glutenin alleles from A. tauschii and synthetic hexaploid wheat samples with different HMW glutenin subunits were charcterised. Five samples were found to contain the HMW glutenin subunit Dtx1.5 that may affect bread-making quality. Polymorphisms of the DNA sequences were detected among alleles encoding different HMW glutenin subunits and within an allele encoding the same HMW glutenin subunit, such as the Dtx1.5 subunit. Three single nucleotide polymorphisms (SNPs) that can distinguish the Dxt1.5 from Dtx2, Dtx5, Dx2 and Dx5 alleles were identified. Allelic specific (AS)-PCR primers were developed based the SNPs located at the non-repetitive N-terminal of the HMW glutenin subunits. The AS-PCR primers can accurately identify accessions containing the Dtx1.5 subunit from those containing other studied subunits by PCR analysis, suggesting the usefulness of AS-PCR for identifying different HMW glutenin subunits of A. tauschii and synthetic hexaploid wheat. The AS-PCR primers developed based on SNPs in this study are valuable in wheat breeding for effective selection of special HMW glutenin subunits.  相似文献   

10.
为了证实长发带芒草中的y型高分子量谷蛋白亚基的存在,利用SDS-PAGE分析了3份长发带芒草的高分子量谷蛋白亚基组成,发现其y亚基的迁移率均较普通小麦中迁移率最快的D y12亚基迁移率更快,应用PCR扩增、序列测定及基因编码区体外表达等方法研究了1份材料中的y亚基,确认了长发带芒草比普通小麦中迁移率最快的D y12亚基迁移率更快的T ay亚基的真实存在及表达。研究结果证实带芒草属具有与普通小麦中相类似的y型高分子量谷蛋白亚基。  相似文献   

11.
分子生物学技术在普通小麦谷蛋白研究中的应用   总被引:8,自引:3,他引:8  
小麦谷蛋白是面筋的主要成分之一,对小麦食品的加工品质起着重要作用。本文从基因序列、分子结构、多态性、遗传转化、QTL研究和MAS等方面综述了国内外有关麦谷蛋白亚基的研究进展。这些研究结果表明,麦谷蛋白的等位基因变异十分丰富,多态性高.序列之间存在很高的同源性。麦谷蛋白的基因结构分为三部分:无重复结构的N-末端和C-末端以及中部重复区域,等位基因的变异主要由基因中部重复区域的序列大小、重复次数及该区域内DNA序列的插入或缺失所造成;Cys-残基的数目和位置影响麦谷蛋白聚合体内亚基间的相互作用,是影响亚基生化特性的重要因素;应用转基因技术已将HMW-GS基因(1Ax1、1Dx5和1Dy10)导入普通小麦中,有助于进行品质改良和麦谷蛋白结构与功能的深入研究。此外,对面筋强度性状的QTL分析和分子标记辅助育种也进行了阐述。  相似文献   

12.
A high Mr glutenin subunit, which has not been described previously, was found in several Swedish wheat (Triticum aestivum L.) breeding lines. The electrophoretic mobility (sodium dodecyl sulphate polyacrylamide gel electrophoresis) of this band was close to the mobility of the subunit that has been referred to as band 21 encoded on chromosome 1B. Reciprocal crosses between wheat materials with and without this band have shown that the synthesis of this subunit is controlled by the locus on chromosome 1A. The new band, called 21*, is thus allelic to bands 1 and 2*. The relevance of the novel-subunit to breadmaking quality was investigated by partial-least-square regression analysis. Using this method, the relationship between the electrophoretic patterns of high Mr glutenin subunits and the specific Zeleny volume was determined. The novel glutenin subunit was found in cultivars with a high specific Zeleny volume. Further investigations are needed before it is possible to determined the influence of the new glutenin subunit on baking quality.  相似文献   

13.
美国小麦品种高分子量麦谷蛋白亚基组成分析   总被引:6,自引:3,他引:3  
为了给我国小麦品质育种工作提供有益的信息,利用SDS-PAGE技术对美国20世纪90年代128份主要推广小麦品种的高分子量谷蛋白亚基(HMW-GS)组成进行了研究。结果表明,在参试材料中共检测到15种不同的亚基类型。在G lu-A 1位点有N u ll、2*、1和一个未知亚基4个等位变异类型,以N u ll为主要类型;G lu-B 1有7、7 8、7 9、6 8、13 16、14 15、17 18等7个等位变异类型,以7 9为主要类型;G lu-D 1有2 12、5 10、2 10、2 未知亚基4个等位变异类型,以5 10为主要类型。同时发现共有27种亚基组合,以“2*,7 9,5 10”为主要类型。所有品种品质得分范围为4~10,平均得分为7.5。研究表明供试品种品质普遍较好。  相似文献   

14.
A highly repetitiveMr58 000 peptide based on residues 102 to 643 of subunit 1Dx5 and forms containing one to four cysteine residues were expressed inE. coliand purified to homogeneity. Incorporation into dough using a 2 g Mixograph showed that most peptides resulted in reduced strength, which was possibly due to dilution or chain termination of glutenin polymers. However, a form containing four cysteines (two each close to the N-terminus and C-terminus) resulted in increased strength, indicating that the repetitive domains of the HMW subunits are sufficient to contribute to dough strength when incorporated into glutenin polymers.  相似文献   

15.
The effect of lowMrwheat protein addition on the amount and composition of the glutenin macropolymer (GMP) of dough was investigated for the three wheat cultivars Obelisk (weak), Camp Remy (medium strong) and Rektor (strong). During mixing, the amounts of high and lowMrglutenin subunit classes, and of the individual subunits decreased. The proportion of highMrglutenin subunits decreased and that of lowMrglutenin subunits increased, indicating an inhomogeneous distribution of the two subunit classes within the polymers present in GMP. During resting, the amounts of the glutenin subunit classes and of individual subunits increased. Meanwhile, the proportion of highMrglutenin subunits in GMP increased. LowMrwheat protein addition retarded re-polymerisation in that the amounts of glutenin subunit classes and of individual highMrglutenin subunits in GMP increased less than without addition. The proportion of highMrglutenin subunits in GMP directly after mixing was also decreased by lowMrwheat protein addition, and the proportion increased faster during dough resting, compared with the GMP in dough without lowMrwheat protein addition. Eventually, after 90 or 135 min resting, no differences existed in the proportions in GMP from doughs with and without lowMrwheat protein addition. LowMrwheat protein addition had no specific effect on individual highMrglutenin subunits, nor on the x-type/y-type subunit ratio in the GMP. In contrast, with increasing lowMrwheat protein addition, a highly significant reduction in the subunit 10 or 12/subunit 9 ratio in GMP was observed. This finding is in line with the decrease in this ratio directly after mixing in GMP of the dough without lowMrwheat protein addition. Since no specific effects were observed, it can be concluded that the lowMrwheat protein acts rather unspecifically on the GMP of dough.  相似文献   

16.
Three hundred and eighty four immobilised overlapping nonapeptides, corresponding to the full amino acid sequences of three high Mr subunits of glutenin from bread wheat (Triticum aestivum) grain, were used to determine the linear epitopes recognised by four monoclonal antibodies. These antibodies were selected on the basis of significant and positive correlations between their binding to wheat flour extracts in a two-site ('sandwich') enzyme immunoassay and rheological measures of dough strength, an important aspect of bread wheat quality. The antibodies did not bind to a single, specific sequence but bound a series of related peptides in each high Mr glutenin subunit examined. The sequences recognised were not identical for the four antibodies, but in each case were in the central repeating domain of the high Mr glutenin subunits, and usually comprised regions that overlapped the degenerate repeat nonamer and hexamer sequences. High Mr glutenin subunits that have been associated with greater dough strength, such as the D-genome allelic products 1Dx5 and 1Dy10, displayed an increased number of the epitope sequences. The location of the epitopes in sequences of overlapping β-turns in the repetitive region supports the hypothesis that dough elasticity arises partly from β-turn-forming secondary structure in the repeat regions of the Mr glutenin subunits. Additional β-turn within high Mr subunits may extend their structure to allow increased interaction between the glutenin subunits and with the other proteins of the gluten complex, thus improving dough strength.  相似文献   

17.
《Plant Production Science》2013,16(3):341-344
Abstract

In order to improve rice dough functionality, we co-transformed the Glu-1Dx5 gene encoding a high molecular weight (HMW) glutenin subunit Dx5 from bread wheat, Triticum aestivum L. and either bar gene conferring resistance to herbicide bialaphos or hpt gene conferring resistance to hygromycin B to rice callus cells of cv. Fatmawati. We molecularly characterized 9 plants regenerated from bialaphos-containing medium and 63 plants from hygromycin-containing medium. The Glu-1Dx5 gene was detected by PCR analysis in 15 transgenic T0 plants. Further analysis of T1 and T2 plants revealed that some transgenic plants carried the Glu-1Dx5 gene. Analysis of the endosperm extracts of T2 plants by SDS-PAGE revealed the existence of a protein similar in size to the wheat Glu-1Dx5 gene product, suggesting successful expression of the transgene. These plants will be incorporated into breeding program for further assessment of their benefits.  相似文献   

18.
Flour samples of 14 wheat cultivars previously characterised by rheological measurements and by baking tests on a micro-scale (Kieffer et al.: Journal of Cereal Science27 (1998) 53–60) were analysed for the relative amounts of gluten protein types using a combined extraction/HPLC procedure. Regression analysis was used to find relations between wheat properties and protein quantities. The results indicated that the maximum resistance of dough and gluten and the gluten index were strongly dependent on the quantity of glutenin subunits (GS) in flour; additionally they were influenced by the ratio of gliadin to glutenin subunits. Within the family of glutenin proteins, the correlation coefficients for high-molecular-weight (HMW) and low-molecular-weight (LMW) GS were in a similar range, but twice the amount of LMW GS was necessary to get the same resistance as with HMW GS. Among HMW GS, the contribution of x-type GS was more important than those of y-type GS. The extensibility of dough and gluten was mainly dependent on the ratio of gliadin to total glutenin subunits, to HMW GS and LMW GS. Dough development time showed the highest correlation with total HMW GS and x-type HMW GS. Bread volume was influenced by the total amount of gluten protein more than by the amount of protein in different groups or of different types, probably because of the rather low range of flour protein content (8·7–12·0 %) within the set studied. Significant differences between gliadins and glutenins with respect to their effects on bread volume could not be detected. The correlation between bread volumes and the quantity of gluten proteins was higher, when dough was mixed to optimum.  相似文献   

19.
A new wheat endosperm protein subunit that was found in accessions belonging to different collections was identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Insoluble in 0·5 M NaCl, 70% ethanol, dimethyl sulphoxide (DMSO) and 50% propan-1-ol, it appeared in the pellet corresponding to the polymeric proteins along with high (HMW) and low molecular weight (LMW) glutenin subunits (GS). In the reduced form, it had an electrophoretic mobility between those two types of glutenin subunits. The apparent Mr of this novel protein was estimated by SDS-PAGE to be 71 000. N-terminal sequence and amino acid analyses indicated a composition similar to the ω-gliadins encoded by genes located on chromosome 1B. This protein can be ascribed to the D-subunits of LMW-GS with at least one cysteine residue that allows it to form part of the polymeric structure of glutenin, as shown by reaction with a fluorogenic reagent specific for sulphydryl groups. Fractions collected after size exclusion high-performance liquid chromatography (SE-HPLC) fractionation and further characterised by SDS-PAGE, confirm that the protein participates in the glutenin polymeric structure. An increase in its concentration was observed in fractions collected within the polymeric peak as elution time increased, implying that a larger amount of this protein is present in small size polymers. The role of this protein in the complex relationship between endosperm proteins and quality parameters is discussed in relation to its likely role as a chain terminator.  相似文献   

20.
In this work we report the effects of the HMW-GS 1Ax1, 1Dx5 and 1Dy10 on the breadmaking quality of the bread wheat cultivar Anza that contains the HMW-GS pairs 1Dx2 + 1Dy12 and 1Bx7* + 1By8, and is null for the Glu-A1 locus. This allows the characterization of individual subunits 1Dx5 and 1Dy10 in the absence of subunit 1Dx5, and the interactions between these subunits and subunits 1Dx2 and 1Dy12 to be determined. Three transgenic lines termed T580, T581 and T590, containing, respectively, the HMW-GS 1Ax1, 1Dx5 and 1Dy10 were characterized over 3 years using a range of widely-used grain and dough testing methods. The transgenic subunits 1Ax1, 1Dx5 and 1Dy10 accounted for 25.2%, 20.3% and 17.9%, respectively, of the total HMW-GS in the three transgenic lines. Although lines T581 and T590 expressed similar levels of subunits 1Dx5 and 1Dy10 they had different effects on other aspects of protein composition, including changes in the ratios of glutenin/gliadin, of HMW/LMW-GS, the 1Dx2/1Dy12, the x-type/y-type HMW-GS and the proportions of high molecular mass glutenin polymers. In contrast, lines transformed to express subunits 1Ax1 and 1Dx5 showed similar changes in protein composition, with higher protein contents and decreased ratios of glutenin/gliadin and 1Dx2/1Dy12. In addition, both transgenic lines showed similar increases in the ratio of x-type/y-type subunits compared to the control line. The transgenic lines were analysed using Farinograph, Mixograph and Alveograph. This confirmed that the expression of all three subunits resulted in increased dough strength (and hence breadmaking quality) of the cultivar Anza. A beneficial effect of subunit 1Dx5 has not been reported previously, transgenic wheat lines expressing this subunit giving overstrong dough unsuitable for breadmaking. However, the expression of subunit 1Dy10 had a greater effect on breadmaking quality than subunits 1Ax1 and 1Dx5. The Farinograph parameters such as dough stability and peak time were increased by 9.2-fold and 2.4-fold, respectively, in line T590 (expressing 1Dy10) with respect to the control line. Similarly, the Mixograph mixing time was increased by four-fold and the resistance breakdown decreased by two-fold in line T590 compared with the control line. The Alveograph W value was also increased by 2.7-fold in line T590 compared to the control line. These transgenic lines are of value for studying the contribution of specific HMW-GS to wheat flour functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号