首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

2.
In a greenhouse experiment, the effect of salinity and Fe chelate on growth and mineral uptake of sunflower (Helianthus annuus L. c.v. Record) was studied.

Sunflower plants were grown in nutrient solution with four levels of salinity (0, 1.5, 3.0 and 4.5 atm), induced by NaCl and four rates of Fe chelate (0, 0.5, 1.0 and 1.5, ppm Fe) as FeEDDHA. The experiment was a completely randomized design with treatment combinations arranged in a factorial manner with three replications.

Dry matter yield, shoot‐root ratio, leaf area, plant height and transpiration decreased as salinity increased, the effect of salinity being depressed by iron applications. Salinity reduced P, K, Ca and Mg uptake by roots as well as that of N, P, K, Ca, Mg by shoots, while Fe applications increased uptake of these elements in roots and shoots. Both salinity and iron applications increased Cl, Na and Fe uptake by roots and shoots, as expected. In most instances salinity reduced uptake of Fe, Mn and Zn by the plants while iron applications improved uptake of these elements.

The sunflower plant used in this experiment was found to be, at least partly, tolerant to salinity and decreased water availability as well as toxicity of ions. Nutritional disorders were the cause of decreased plant growth by increasing salinity of the nutrient solution. The decreased plant growth and mineral uptake, induced by salinity, were partially offset by increased iron levels in the nutrient solution.  相似文献   


3.
Four greenhouse sand culture experiments were conducted with Kenhy tall fescue, a Lolium multiflorum X Festuca arundinacea hybrid derivative. These experiments were conducted to characterize mg accumulation and the chemical composition of Kenhy under various combinations of Mg, K, and N solution concentrations. Of primary interest was the shape and magnitude of response of tissue Mg concentration to solution K levels and potential for Mg accumulation that exists in Kenhy under low solution K levels. Analyses were made for Mg, K, Ca, Na, N, and nitrate.

Increased Kg concentrations were observed with increased solution Mg. Increased solution K was in all cases associated with lower concentrations of Mg. Under conditions of low solution K (0.125 mM) and adequate Mg (0.25 mM), Mg accumulation exceeded 1.0%. Increased solution N was associated with decreased Mg concentrations. Both the linear and quadratic components of Mg solution concentration contributed significantly to increased tissue Mg. Hawever, the linear component of K solution concentration was sufficient to account for decreased tissue Mg. The reduction of tissue Mg to solution K was greater at higher concentrations of K.

Potassium accumulation significantly increased with increased solution K. Increased solution Mg was associated with lower tissue K in which the greatest reduction in K accumulation occurred with the first Mg addition.

Calcium accumulation decreased with increased solution K. Higher solution Mg was associated with lower tissue Ca levels while higher levels of N were associated with increased tissue Ca. Sodium accumulation was significantly reduced by increased K concentrations but neither Mg nor N was effective in consistently altering tissue Na concentrations.

From these experiments it is evident that Kenhy tall fescue has the absorptive capability for high levels of Mg under conditions of low levels of solution K. However, even small increments of solution K were shown to be capable of substantially reducing the Mg content, Thus, the selection of forage grasses for Mg absorptive capability must be conducted under conditions of high solution K, if large improvements on present forage materials are to be obtained. In addition, the inverse relationship between Mg and K present in Kenhy seedlings confirms the need to consider K fertilization recommendations in attempting to increase forage Mg durirg the grass tetany period.  相似文献   


4.
The cation exchange capacity of roots (CECR) has been measured according to three different methods : titration of H‐roots with NaOH in the presence of CaCl2, MgCl2, or NaCl 0.1 N, saturation of roots with mixed Ca‐Mg‐Na solutions of eight different compositions and extraction of the adsorbed cations with copper, saturation of roots with Cu‐ions and extraction with HC1. Two types of roots were studied : roots of ryegrass (Lolium multiflorum Lm.) and roots of clover (Trifolium pratense L.)

The very good coincidence of the results from the three methods tends to prove the reliability of the experimental procedures. The simplicity and the reproducibility of the Cu‐method renders it recommendable in view of possible standardization of the methods in the future.  相似文献   


5.
Seedlings of sugar beet (Beta vulgaris) were grown in nutrient solutions containing a range of Cu and Zn concentrations. Based on measurements of shoot and root length and dry weight, copper was found to be already toxic at 10 μM, while Zn became toxic at 100 μM. At Cu and Zn levels found to induce a similar level of growth inhibiton, the influence of increasing the supply of K, Ca and Mg was investigated. Increasing the concentration of both Ca and Mg in the nutrient solution attenuated the degree of inhibition of root growth by Zn, but not Cu. Potassium did not affect the toxicity of either Cu or Zn. An increase in Ca decreased the level of both Cu and Zn in roots. Magnesium ameliorated the toxicity effects of Zn without effecting the Zn concentration in the roots. Treatment with Zn significantly decreased the concentration of Mg in the roots. An increased supply of Mg lowered the percentage decrease in root Mg concentration due to Zn toxicity. The maintenance of an adequate Mg level in the roots may be critical to prevent Zn induced inhibition of root growth.  相似文献   

6.
An understanding of the phosphorus, P, uptake characteristics of plant roots is important for developing practices that improve P fertilizer efficiency. Phosphorus uptake by plant roots is influenced by plant root properties and solution P level. Since little information about the nutrient uptake characteristics of spring wheat (Triticum vulgare L.) roots is available, this research was undertaken with wheat to determine the relation between the proportion of the roots supplied with P on P influx and root growth characteristics. An experiment was conducted with wheat plants grown in solution culture in a controlled climate chamber.

Phosphorus uptake kinetics were measured on 30‐day‐old wheat using split‐root experiments. Supplying P to only part of the root system resulted in lower plant P concentration and higher Imax(maximum influx) by the roots. The Imax value of wheat roots was much lower than corn (Zea mays L.) and soybeans (Glycine max L.), but the values of Km (the solution P concentration where influx, In is 1/2 Imax) and Cmin (the solution P concentration where influx, In is 1/2 Imax) were greater than those of both corn and soybean crops grown in similar experiments. Phosphorus concentrations in wheat plant's shoots and roots were higher than those for corn and soybean with the same proportions of roots in P solution. Decreasing the proportion of the roots supplied with P had no statistically significant (p = 0.05) effect on shoot dry weight. This differs from the results for corn and soybeans where it decreased significantly as the proportion of the roots exposed to P decreased. These results indicate that the effect of P placement on P uptake and on plant root growth varied among species.  相似文献   


7.
This study was conducted to determine relationships between Al toxicity and mineral uptake of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.), and rye (Secale cereale L.). Two culti‐vars of each species were grown in 1/5‐strength Steinberg solution with 0, 3, 6, or 12 ppm Al added. The solutions were adjusted to pH 4.8 at transplanting and were not adjusted thereafter. The plants were grown in a growth chamber for 19 days before harvesting to determine nutrient solution pH, dry weights, and Al, Ca, Mg, K, and P levels in plants. Increasing Al concentration reduced the final pH of solutions. The addition of 12 ppm Al severely reduced the growth and increased Al concentration of plant tops. The Al levels in roots generally increased with increments of added Al up to 6 ppm. Increasing Al decreased the uptake of Ca, Mg, and P by plant tops more than that of K. Regression analyses indicated that Al toxicity was associated with increasing K/Ca + Mg equivalent ratios and decreasing P concentration in plant tops. Differences between species were: higher Al concentration in rye than wheat with 6 and 12 ppm Al, higher translocation of Ca from roots to tops in wheat than in rye and Mg in triticale and wheat than rye; K/Ca + Mg equivalent ratios associated with 50% reduction in top growth followed the order: triticales > tolerant wheat > sensitive wheat > rye. Differences in mineral uptake associated with Al toxicity in wheat were more indicative of differential Al sensitivity in wheat than in triticale and rye which have higher internal Al tolerance.  相似文献   

8.
In separate tests, rabbiteye blueberries (Vaccinium ashei Reade) grown in sand culture were subjected to varying levels of Ca (0–81 mg/liter) and Mg (0–24 mg/liter) applied at rates of 250 ml/plant daily. Other essential nutrients were kept constant. Leaf concentrations of N, P, K, Mg, Ca, Mn, Fe, Cu, B, Zn, Co, and Al were determined. The concentration of Ca in the leaves increased linearly but that of Cu decreased in response to increasing levels of Ca fertilization. Leaf concentrations of other elements were not significantly influenced by Ca fertilization. Leaf Mg and Al concentrations increased linearly in response to increasing levels of Mg fertilization. The P content in leaves followed a quadratic curve with increased Mg fertilization. Percent P increased from the 0 to 12 mg/liter levels and then decreased from the 12 to 24 mg/liter levels of Mg. High levels of Mg fertilization resulted in reduced Cu content of leaves.

Fertilization rates of Ca or Mg had little effect on shoot dry weight except at the 0 mg/liter levels. As leaf Ca decreased below 0.20% Ca, Ca deficiency symptoms became more prevalent. Magnesium deficiency symptoms increased as leaf Mg decreased below 0.15% Mg.  相似文献   


9.
Tomato plants were grown in sand culture with NO3 or NH4 N at two levels of light. Foliar sprays at three levels of N as well as combinations of foliar and root feeding were used.

Shade increased NH4 toxicity in plants sprayed with NH4 but decreased the toxicity in plants receiving NH4 through the roots. NH4‐N greatly reduced growth and cation uptake when supplied through the roots but not with foliar application. Plants sprayed with NH4 showed better growth, higher K, Ca, and Mg content and lower free NH4 in shoot, compared to plants receiving NH4 through the roots.

The overall free amino acid contents of shoots was higher for NH4‐fed plants regardless of how the N was applied. Plants sprayed with NH4 incorporated a greater amount of N into insoluble compounds compared with NO3 nutrition. The N uptake per unit of leaf area was higher for plants grown under full sun light whereas N content was higher for plants grown under hade. N content in tissue increased with N concentration in foliar spray, although plants supplied with N through the roots had higher levels of free amino acids and total nitrogen.  相似文献   


10.
不同温度型小麦K+吸收动力学特征及其盐胁迫效应   总被引:1,自引:0,他引:1  
本试验采用吸收动力学方法结合药理学方法,研究了NR9405(暖型)、小偃六号(中间型)、RB6和陕229(冷型)等4种不同温度型小麦幼苗(14 d)K+ 的高亲和和低亲和吸收特征。结果表明: 1)在0~50mmol/L的K+浓度范围内,K+吸收可分为0~1和1~50mmol/L两个阶段,均可用米氏方程描述;2)对于高亲和吸收系统(0~1 mmol/L),冷型小麦具有高的饱和吸收率Imax [42.46~43.12 mol/(h?g),RDW]和亲合系数Km(0.430~0.432 mmol/L),暖型小麦(NR9405)和小偃六号具有较低的Imax[33.57~35.38 mol/(h?g),RDW]和Km(0.332~0.353 mmol/L),抑制低亲和系统后增加了4种小麦的高亲和转运载体数量,降低了冷型小麦对K+的亲和力,但对NR9405和小偃六号的Km值影响较小; 3)抑制高亲和吸收后,低亲和系统的Imax和Km均增加; 4)在盐胁迫下,K+高亲和和低亲和吸收系统均受到抑制,小麦幼苗K+吸收能力均显著降低,暖型小麦NR9405和小偃六号的高亲和系统Km几乎不受盐胁迫的影响,而冷型小麦的Km值因盐胁迫而降低。因此,在盐胁迫下高亲和吸收系统的稳定性可能是影响暖型小麦耐盐性高的一个重要因素,这对小麦耐盐性研究及耐盐品种选育均具有一定的指导意义。  相似文献   

11.
The relation between plant age and nutrient absorption properties of red winter wheat (Triticum aestivum L.) roots were investigated. Understanding the change in ion uptake parameters with increasing plant age is helpful in devising efficient fertilization systems. Such information can be used to determine the nutrient levels needed in the soil to supply nutrients rapidly enough to the root surface to minimize deficiencies. Wheat was grown for periods up to 40 days in solution culture in a controlled climate chamber. Sequential harvest and nutrient influx measurements were made. Shoot growth was exponential with time to 30 days and linear thereafter. Root dry weight increased linearly with time at a slower rate than shoot dry weight. Root length increased linearily with time. With increasing plant age there was a reduction in average P and K uptake rate while average uptake rates for Ca and Mg remained relatively unchanged. With increasing plant age, the maximum influx, Imax. for P and Mg remained constant, but for K and Ca, there was a decrease. For the Michael is constant, Km, no change was observed for P, an increase occurred for K, and a decrease for Ca and Mg, as the wheat plant grew from 5 to 40 days.  相似文献   

12.
Abstract

Nutrient solution experiments were conducted in the growth chamber to study the influence of rootstock, solution Ca/Mg ratios and solution nickel on K uptake. The experimental plants were one‐year‐old prune trees: ‘French’ prune (Prunus domestica L.) scions grafted on Myrobalan 29C (P. cerasifera Ehrh.), Marianna 2624 (P. cerasifera x P. munsoniana?) or Nemaguard (P. persica x P. davidiana) rootstocks. Ion uptake parameters Imax, Km, and Cmin were calculated from ion depletion measurements over a 6 to 10‐hr period.

With K solution concentrations initially adjusted to 100 μM, K uptake rates of Prunus rootstocks were constant down to approximately 20–30 μM, then declined. Rootstocks were able to deplete solution K to concentrations less than 1 μM. There were no significant differences in K uptake parameters among the rootstocks tested.

Varying solution Ca/Mg ratio from 2.75/1 to 1/4 (Ca + Mg = 3.75 mM) had no effect on K uptake. Potassium uptake rates of Myrobalan 29C rootstocks in the presence of 100 μM nickel were not significantly different from those in the absence of nickel. Rates of nickel uptake were significantly lower than those of K. After eight days of pretreatment in solutions adjusted daily to 100 μM Ni(NO3)2, prune leaves began to show signs of interveinal chlorosis. Potassium uptake by nickel pretreated trees was not significantly different from that by control trees. Results are discussed in relation to field observations of K deficiency in prune orchards.  相似文献   

13.
Biochar affects base cation retention and leaching when it is used to enhance the base cation status of acidic soil. However, the details of its contribution are not yet clear. In this study, six loadings of corn straw biochar (0%, 2%, 4%, 6%, 8% and 10%, w/w) were applied to an acidic Ferralsol and incubated for 1 year. The results showed that the content of water-soluble and exchangeable base cations of K, Na, Ca and Mg increased with increasing levels of biochar in amended soil. The percentage of water-soluble Na, Ca and Mg of amended soil significantly decreased, while the percentage of exchangeable K, Ca and Mg increased significantly after the addition of biochar. For K and Na, biochar affected their leaching concentrations both as a source and by increasing the pH. For Ca, biochar reduced Ca leaching when the biochar loading was ≥4%, and the contribution increased from 30.8% to 100% at 4%–10% loading. For Mg, biochar reduced Mg leaching at biochar loadings 2%–10%, the reduction increasing from 22.0% to 70.5%. The results show that corn straw biochar can increase the content of the soil nutrient base cations K, Ca and Mg by increasing their exchangeable forms and enhance soil retention by decreasing their leaching. Thus, corn straw biochar can be used to effectively improve acidic soil base cation fertility.  相似文献   

14.
The effects of pH (c. 7.0, 5.4, 4.5 and 4.0), nominal Al levels (0 and 8 μmol L?1) and Ca levels (10 and 50 μmol L?1) on Na influx, efflux and netflux of brown trout have been investigated using artificial lake water of known composition. Low pH had little effect on influx, but tended to increase efflux, particularly in the low Ca treatments. A nominal addition of 8 μmol Al L?1 at pH 4.5 and 4.0 reduced influx significantly. Efflux was unaffected. Aluminium addition at pH c. 7.0 and 5.4 had no such effect. The measured Al concentrations at the end of the static 8 hr flux measuring experiments were markedly lower than the nominal amount of A1 added to the start.  相似文献   

15.
Abstract

One proposed mechanism of aluminum (Al)‐tolerance involves the ability of plants to maintain uptake of essential mineral elements in the presence of Al. To examine this hypothesis, taro [Colocasia esculenta (L.) Schott] cultivars (cv.) Lehua maoli and Bun long were grown in hydroponic solution at six initial Al levels (0, 110, 220, 440, 890, and 1330 μM Al), and plant mineral concentrations were determined after 27 days. Increasing Al levels significantly increased Al concentrations in taro leaf blades, petioles, and roots. This increase in Al concentrations in the leaf blades as solution Al levels increased was greater for Al‐sensitive cv. Bun long compared to cv. Lehua maoli, resulting in significant interaction between Al and cultivar effects. However, no significant cultivar differences were found for Al concentrations in the petioles or roots. Increasing Al levels in solution significantly depressed concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and iron (Fe) in taro leaf blades, and significantly depressed concentrations of Ca, Mg, copper (Cu), and zinc (Zn) in taro roots. Aluminum‐induced Ca deficiency appeared to be one possible mechanism of Al phototoxicity in taro, becvasue Ca concentrations in the leaf blades and roots at the higher Al levels were within the critical deficiency range reported for taro. Significant cultivar differences were found, in which Al‐tolerant cv. Lehua maoli had significantly greater Ca and Cu concentrations in the roots, and significantly greater potassium (K) concentrations in the leaf blades across all Al levels. Our results show that Al‐tolerance in taro cultivars is associated with the ability to maintain uptake of essential mineral nutrients, particularly Ca and K, in the presence of Al.  相似文献   

16.
Lucerne was grown in nutrient solutions at adequate and “deficient”; levels of sulphur, nitrogen, phosphorus or potassium. Volatile losses of sulphur were then measured when shoots and roots were oven dried at 80°C for 48 hours.

Small but significant losses of sulphur occurred during oven drying. Losses from shoots ranged from 4.2 to 13.9 μgS/g dry weight, which represented from 0.38 to 0.66% of the total sulphur content of the shoot. Losses from roots ranged from 12.0 to 47.8 μgS/g dry weight, representing 0.82 to 1.77% of the total sulphur content of the root. Decreases in supply of nitrogen, phosphorus, potassium or sulphur generally decreased the amount of volatile sulphur lost by oven drying shoots. Losses from roots generally decreased when supply of sulphur decreased, but increased when nitrogen and potassium supply decreased, and were generally unaffected by phosphorus supply.

The organic sulphur concentration in the tissue was linearly correlated with absolute losses of sulphur (r = 0.799** for shoots; r = 0.822** for roots), the amount of sulphur lost per unit dry weight (r = 0.469* for shoots; r = 0.381* for roots) and the percentage of the total sulphur released as volatile sulphur (r = 0.937** for shoots; r = 0.970** for roots). By contrast, the total sulphur concentration in the tissue was linearly correlated only with the amount of sulphur lost per unit dry weight ( r = 0.704** for shoots; r = 0.723** for roots).  相似文献   


17.
Birch seedlings (Betula pendula) were cultivated in nutrient solution with 0–2 μM cadmium (Cd). The effects of 2–10 days of Cd exposure on root and shoot element composition [potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), and Cd] and growth (as percentage dry weight increase) were investigated. The element composition of fine roots and remaining root parts were analysed separately to elucidate the significance of the fine roots as a primary target for Cd toxicity. The nutrient composition of the roots was considerably altered by the Cd exposures, whereas the nutrient composition of the shoot was less affected. After eight days, the whole root (fine roots + remaining roots) concentrations of K, Ca, Mg, and Mn were reduced, whereas the opposite was found for Cu and Mo. The element distribution between fine roots and remaining roots was altered by the Cd exposures. Cadmium was accumulated in the roots and in fine roots especially. Fine roots also exhibited a capacity for Cu accumulation and a retainment of Ca and S. Total plant growth was stimulated by 0.05 μM Cd but was reduced by the 0.5–2 μM Cd treatments. Root growth was increased by the Cd exposures and growth reductions were restricted only to the shoot. Accumulation of Cd and Cu and a retainment of Ca and S in the fine roots together with a preference for root growth, imply that the explanation for the Cd effects obtained may include mechanisms for Cd tolerance.  相似文献   

18.
Nickel (Ni) is an essential micronutrient for higher plants but is toxic to plants at excess levels. Plant species differ extensively for mineral uptake and accumulation, and these differences often help explain plant tolerances to mineral toxicities/deficiencies. Solution culture experiments were conducted under controlled conditions to determine the effects of Ni on influx into roots (IN) and transport from roots to shoots (TR) of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), calcium (Ca), magnesium (Mg), phosphorus (P), and sulfur (S) in white clover (Trifolium repens L.), cabbage (ßrassica oleracea van capitata L.), ryegrass (Lolium perenne L.), and maize (Zea mays L.). Nickel decreased both IN and TR of Zn, Cu, Ca, and Mg, but only TR of Fe and Mn in white clover. Both IN and TR of Cu, Fe, Mn, Mg, and S were markedly decreased by Ni >30 μM in cabbage, whereas IN and TR of P increased with Ni treatment. For ryegrass, TR of Cu, Fe, Mn, Ca, and Mg was decreased, but IN of these elements except Mg was not affected by Ni. The IN and TR of P and S were increased in ryegrass with increasing external Ni levels. Nickel inhibited IN of Cu, Ca, and Mg, and TR of Zn, Cu, Fe, Mn, Ca, and Mg in maize. Plant species differed in response to Ni relative to IN and TR of mineral nutrients. Plant tolerance to Ni toxicity was associated with the influence of Ni on IN and TR of Cu, Fe, and Mn in white clover and cabbage but not in maize and ryegrass.  相似文献   

19.
Solution culture experiments were conducted under controlled environmental conditions to determine the effects of cadmium(II) [Cd(II)] activity (0, 8, 14, 28, 42, and 54 μM) on influx (IN) into roots and transport (TR) from roots to shoots of zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca), magnesium (Mg), phosphorus (P), and sulfur (S) in ryegrass (Lolium perenne L.), maize (Zea mays L.), white clover (Trifolium repens L.), and cabbage (Brassica oleracea var. capitata L.). Shoot and root dry matter (DM) decreased with increased external Cd, and plant species differed extensively. Ryegrass and cabbage were relatively tolerant to Cd toxicity compared to white clover and maize. Influx and TR of Cu, Zn, Fe, Mn, Ca, and Mg were lower with increasing external Cd compared to controls, and species also differed. Influx and TR of P were enhanced in each species with up to 14 μM Cd, decreased in white clover and cabbage at higher Cd levels, while in maize and ryegrass continued to increase as Cd increased. Influx and TR of S were high in white clover at 8 μM Cd and decreased as Cd increased. Influx of S was high in ryegrass, but TR of S remained relatively constant as Cd increased. Influx and TR of S did not significantly change in maize, but decreased in cabbage as Cd increased. With Cd up to 14 μM, decreases in both IN and TR of Zn, Fe, Mn, Ca, and Mg were greater in white clover than in cabbage. Sensitivity of the dicotyledonous plant species to Cd toxicity might have been associated with Cd effects on IN and TR of Fe, Mn, Ca, and Mg. However, differences in plant sensitivities to Cd toxicity between ryegrass and maize were not reflected in Cd effects on IN and TR of mineral nutrients.  相似文献   

20.
Abstract

In a soil system variation in the concentration of any one ion as induced by external addition might bring changes in the ionic‐equilibria, diffusion rate and strength of adsorption of all the ions involved. In four Indiana soils the changes in ionic equilibria, selectivity coefficient and rate of diffusion coefficient for K, Na, Ca and Mg were investigated at 5 levels of added K. The experiments were carried out under controlled laboratory conditions by incubating soils for 3 weeks at 25C. All soils had a greater fraction of Ca and Mg on the exchange phase than in solution, whereas with K and Na the reverse occurred. Potassium adsorption isotherms for all the soils differed indicating the difference in the nature of soil materials involved. Chalmers soil with high clay content with high exchange capacity had high differential buffer value for K. In all the soils, K was adsorbed preferentially to Na at all the levels of K addition, Calcium was adsorbed preferentially to Mg on the Zanesville and Toronto soils. However, in Chalmers and Raub soils, reverse was observed when the level of K addition was exceeded 1.0 and 0.5 me K/100g soil, respectively. This difference in Mg for Ca is attributed to smaller proportion of Mg saturation on the exchange surface. Divalent cations were preferentially adsorbed over monvalent ions. Increasing levels of K addition increased the diffusion rates of all the ions under consideration. The rate of diffusion for K and Ca were governed by concentrations of these ions on the exchange and solution phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号