首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two doses of an alpha 2-adrenoreceptor antagonist, idazoxan, were administered to reverse the CNS depressant and bradycardia effects of xylazine in calves. Once a week for 3 weeks, each of 6 calves were administered IV one treatment of: (1) 0.2 mg of xylazine/kg of body weight followed in 10 minutes by 1 ml of 0.9% NaCl, (2) 0.2 mg of xylazine/kg followed in 10 minutes by 10 micrograms of idazoxan/kg, or (3) 0.2 mg of xylazine/kg followed in 10 minutes by 30 micrograms of idazoxan/kg. The order of the 3 treatments in each calf was selected at random. Xylazine alone caused lateral recumbency for 27.2 +/- 3.0 minutes (mean +/- SEM). Idazoxan administered at dosages of 10 and 30 micrograms/kg shortened xylazine-induced lateral recumbency to 11.5 +/- 0.8 and 10.3 +/- 0.2 minutes, respectively. Calves given xylazine alone stood at greater than 60 minutes after the onset of recumbency. Idazoxan given at dosages of 10 and 30 micrograms/kg shortened the time to standing to 16.8 +/- 1.7 and 11.3 +/- 0.2 minutes, respectively. Idazoxan given at a dosage of 30 micrograms/kg also reversed xylazine-induced bradycardia. Results indicated that idazoxan should be a useful antidote for xylazine overdose in cattle.  相似文献   

2.
We compared the ability of tolazoline and yohimbine to antagonize xylazine-induced central nervous system depression, bradycardia, and tachypnea in 9 ewes and 5 rams. Once a week for 3 weeks, each sheep received one IV treatment of 0.4 mg xylazine/kg, 0.4 mg xylazine/kg followed in 10 minutes by 2 mg tolazoline/kg, or 0.4 mg xylazine/kg followed in 10 minutes by 0.2 mg yohimbine/kg. The order of the 3 treatments in each sheep was randomized. Xylazine alone caused recumbency for 41.0 +/- 3.7 minutes (mean +/- SEM). Tolazoline and yohimbine shortened the xylazine-induced recumbency to 12.1 +/- 0.9 minutes and 18.1 +/- 1.5 minutes, respectively. Sheep given xylazine alone had head droop for 34.0 +/- 5.4 minutes after rising. Head drooping of sheep given tolazoline or yohimbine was reduced to 10.1 +/- 1.7 minutes and 14.2 +/- 1.7 minutes, respectively. Both tolazoline and yohimbine reversed the bradycardia and tachypnea that followed xylazine administration. No statistical differences in the rate and magnitude of the reversal were observed between the 2 drugs.  相似文献   

3.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

4.
We compared the ability of 3 alpha 2-adrenoreceptor antagonists, idazoxan (0.05 mg/kg), tolazoline (2 mg/kg), and yohimbine (0.2 mg/kg) to reverse xylazine (0.3 mg/kg)-induced respiratory changes and CNS depression in 6 ewes. Once weekly, each ewe was given a random IV treatment of xylazine, followed in 5 minutes by either an antagonist or 0.9% NaCl solution. Xylazine alone caused recumbency for 54.2 +/- 5.3 minutes (mean +/- SEM). Xylazine also increased respiratory rate and decreased PaCO2 for at least 45 minutes, but did not significantly change arterial pH or PaCO2. Idazoxan and tolazoline were equally effective in reversing the respiratory actions of xylazine; however, yohimbine was less effective in reducing the respiratory rate and was ineffective in antagonizing the decreased PaO2. Idazoxan and tolazoline decreased the duration of xylazine-induced recumbency to 6.3 +/- 0.6 and 9.5 +/- 2.3 minutes, respectively, whereas yohimbine did not significantly change this effect of xylazine. Thus, at the dosages studied, idazoxan and tolazoline appeared to be more effective than yohimbine in reversing the respiratory and CNS depressant actions of xylazine in sheep.  相似文献   

5.
Effect of yohimbine on xylazine-induced immobilization in white-tailed deer   总被引:1,自引:0,他引:1  
Two groups of white-tailed deer were given IM injections of xylazine with a projectile syringe. Deer in one of the groups served as controls and did not receive any treatments other than xylazine. Deer in the other group were given yohimbine IV at various times (15 to 171 minutes) to evaluate its effect on xylazine-induced immobilization. In 5 control deer given 3.7 +/- 1.2 mg of xylazine/kg (mean +/- SD), onset of recumbency was 13 +/- 2 minutes and time to standing was 268 +/- 76 minutes. In 20 principal deer given 2.8 +/- 1.0 mg of xylazine/kg, onset of recumbency was 8 +/- 7 minutes, time to sitting after giving yohimbine was 3 +/- 4 minutes in 18 of the deer, and time to standing after giving yohimbine was 4 +/- 5 minutes in 19 of the deer. Most of these deer were still moderately sedated 30 minutes after injection of yohimbine, but none of them became reimmobilized or as deeply sedated as before the injection of yohimbine. Yohimbine also reversed the bradycardia and respiratory depression induced by xylazine.  相似文献   

6.
Dairy calves immobilized with xylazine (XYL) were given atipamezole-HCl (ATI) at different XYL:ATI dose ratios (w/w) for reversal and the antagonistic effect of xylazine was evaluated. Control animals received saline for comparison. Intramuscular administration of xylazine (0.139–0.357 mg/kg) induced sedation with complete immobilization in all animals (n=195) and there were no spontaneous recoveries before injection of atipamezole or saline. Atipamezole was given 10–81 min and saline 25 min after xylazine administration. Intramuscular administration of atipamezole at XYL:ATI dose ratios of 5:2 (n=11), 10:3 (n=21), 4:1 (n=21) and 5:1 (n=25) effectively antagonized the xylazine-induced immobilization and sedation. The mean times (standard deviation) from injection of atipamezole until the animals were standing for these dose ratio groups were 6.09 (3.12), 5.15 (2.87), 6.35 (2.54) and 7.86 (3.11) min, respectively. The mean time to standing for control animals (n=11) was 94.1 (3.0) min. Intravenous administration of atipamezole at XYL:ATI dose ratios of 10:3 (n=7), 4:1 (n=33), 5:1 (n=16), 8:1 (n=27) and 10:1 (n=9) rapidly reversed the xylazine-induced immobilization and sedation. The mean times (standard deviation) from injection of atipamezole until the animals were standing for these dose ratio groups were 0.98 (0.22), 1.32 (0.48), 1.09 (0.34), 1.39 (0.52) and 1.60 (0.69) min, respectively. The mean time to standing for control animals (n=14) was 88.1 (13.1) min.Animals given high doses of atipamezole (dose ratio groups 5:2 intramuscularly, 10:3 intravenously and 4:1 intravenously) showed signs of excitement while in animals given low doses of atipamezole (dose ratio groups 5:1 intramuscularly and 10:1 intravenously) resedation and relapse into recumbency occurred. Medium doses of atipamezole (dose ratio groups 10:3 intramuscularly, 4:1 intramuscularly, 5:1 intravenously and 8:1 intravenously) did not cause any undesirable side-effects or resedation, and can be recommended for reversal of xylazine-induced sedation in dairy calvesAbbreviations ATI atipamezole-HCl - BW body weight - IM intramuscular - IV intravenous - SD standard deviation - XYL xylazine  相似文献   

7.
This study aimed to investigate and compare the antagonistic effects of atipamezole, yohimbine, and prazosin on xylazine-induced diuresis in clinically normal cats. Five cats were repeatedly used in each of the 9 groups. One group was not medicated. Cats in the other groups received 2 mg/kg BW xylazine intramuscularly, and saline (as the control); 160 μg/kg BW prazosin; or 40, 160, or 480 μg/kg BW atipamezole or yohimbine intravenously 0.5 h later. Urine and blood samples were collected 10 times over 8 h. Urine volume, pH, and specific gravity; plasma arginine vasopressin (AVP) concentration; and creatinine, osmolality, and electrolyte values in both urine and plasma were measured. Both atipamezole and yohimbine antagonized xylazine-induced diuresis, but prazosin did not. The antidiuretic effect of atipamezole was more potent than that of yohimbine but not dose-dependent, in contrast to the effect of yohimbine at the tested doses. Both atipamezole and yohimbine reversed xylazine-induced decreases in both urine specific gravity and osmolality, and the increase in free water clearance. Glomerular filtration rate, osmolar clearance, and plasma electrolyte concentrations were not significantly altered. Antidiuresis of either atipamezole or yohimbine was not related to the area under the curve for AVP concentration, although the highest dose of both atipamezole and yohimbine increased plasma AVP concentration initially and temporarily, suggesting that this may in part influence antidiuretic effects of both agents. The diuretic effect of xylazine in cats may be mediated by α2-adrenoceptors but not α1-adrenoceptors. Atipamezole and yohimbine can be used as antagonistic agents against xylazine-induced diuresis in clinically normal cats.  相似文献   

8.
OBJECTIVE: To evaluate the effects of intranasal administration of midazolam and xylazine (with or without ketamine) and detomidine and their specific antagonists in parakeets. DESIGN: Prospective study. ANIMALS: 17 healthy adult Ring-necked Parakeets (Psittacula krameri) of both sexes (mean weight, 128.83+/-10.46 g [0.28+/-0.02 lb]). PROCEDURE: The dose of each drug or ketamine-drug combination administered intranasally that resulted in adequate sedation (ie, unrestrained dorsal recumbency maintained for >or=5 minutes) was determined; the onset of action, duration of dorsal recumbency, and duration of sedation associated with these treatments were evaluated. The efficacy of the reversal agents flumazenil, yohimbine, and atipamezole was also evaluated. RESULTS: In parakeets, intranasal administration of midazolam (7.3 mg/kg [3.32 mg/lb]) or detomidine (12 mg/kg [5.45 mg/lb]) caused adequate sedation within 2.7 and 3.5 minutes, respectively. Combinations of midazolam (3.65 mg/kg [1.66 mg/lb]) and xylazine (10 mg/kg [4.55 mg/lb]) with ketamine (40 to 50 mg/kg [18.2 to 22.7 mg/lb]) also achieved adequate sedation. Compared with detomidine, duration of dorsal recumbency was significantly longer with midazolam. Intranasal administration of flumazenil (0.13 mg/kg [0.06 mg/lb]) significantly decreased midazolam-associated recumbency time. Compared with the xylazineketamine combination, duration of dorsal recumbency was longer after midazolam-ketamine administration. Intranasal administration of flumazenil, yohimbine, or atipamezole significantly decreased the duration of sedation induced by midazolam, xylazine, or detomidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Intranasal administration of sedative drugs appears to be an acceptable method of drug delivery in Ring-necked Parakeets. Reversal agents are also effective when administered via this route.  相似文献   

9.
The quality and duration of anaesthesia, cardiorespiratory effects and recovery characteristics of a morphine, medetomidine, ketamine (MMK) drug combination were determined in cats. Six healthy, adult female cats were administered 0.2 mg/kg morphine sulphate, 60 microg/kg medetomidine hydrochloride, and 5 mg/kg ketamine hydrochloride intramuscularly. Atipamezole was administered intramuscularly at 120 min after MMK administration. Time to lateral recumbency, intubation, extubation and sternal recumbency were recorded. Cardiorespiratory variables and response to a noxious stimulus were recorded before and at 3 min and 10 min increments after drug administration until sternal recumbency. The time to lateral recumbency and intubation were 1.9+/-1.2 and 4.3+/-1.2 min, respectively. Body temperature and haemoglobin saturation with oxygen remained unchanged compared to baseline values throughout anaesthesia. Respiratory rate, tidal volume, minute volume, heart rate, and blood pressure were significantly decreased during anaesthesia compared to baseline values. One cat met criteria for hypotension (systolic blood pressure <90 mmHg). End tidal carbon dioxide increased during anaesthesia compared to baseline values. All but one cat remained non-responsive to noxious stimuli from 3 to 120 min. Time to extubation and sternal recumbency following atipamezole were 2.9+/-1.1 and 4.7+/-1.0 min, respectively. MMK drug combination produced excellent short-term anaesthesia and analgesia with minimal cardiopulmonary depression. Anaesthesia lasted for at least 120 min in all but one cat and was effectively reversed by atipamezole.  相似文献   

10.
For each of 3 separate evaluations, 6 fasted llamas (Lama glama) were sedated with xylazine (1.1 mg/kg of body weight, IV) and then 15 minutes later were given normal saline solution (5.0 ml, IV; control values), doxapram (2.2 mg/kg, IV), or 4-amino-pyridine (0.3 mg/kg, IV) and yohimbine (0.125 mg/kg, IV). After administration of 4-aminopyridine and yohimbine, the llamas stood in a mean of 11 minutes and resumed eating in a mean of 34 minutes; both means were significantly less (P less than 0.05) than control values (46 minutes and 67 minutes, respectively). Doxapram induced muscle fasciculations, and (compared with control values) did not significantly decrease the time to standing (41 minutes) or the time until the animals resumed eating (68 minutes). Yohimbine and 4-aminopyridine in combination rapidly antagonized xylazine-induced sedation in llamas, whereas doxapram was ineffective as an antagonist of xylazine-induced sedation.  相似文献   

11.
Atipamezole antagonism of xylazine sedation was evaluated in six ponies. Atipamezole (0.15 mg/kg) or saline was injected intravenously 15 minutes after the ponies had been sedated with xylazine (1.0 mg/kg). Arterial blood pressure and gases, pulse and respiratory rates, the electrocardiogram, nose-to-ground distance and a subjective sedation score were recorded. The pretreatment nose-to-ground distance and PaO2 returned to normal sooner after atipamezole than after saline and the ponies' appetite and normal locomotion also recovered sooner. No significant differences were observed between the effects of saline and atipamezole on the other measurements.  相似文献   

12.
Intramuscular injections of atipamezole (200 micrograms/kg), doxapram (2.5 mg/kg) and saline (0.1 ml/kg) were compared for their ability to reverse xylazine sedation in dogs. Atipamezole effectively reversed the sedative effects and partially reversed the cardiopulmonary effects of xylazine. Doxapram did not arouse the dogs as much as atipamezole, but it shortened the time taken for them to stand although the dogs were still ataxic.  相似文献   

13.
A group of 15 African elephants (Loxodonta africana) were immobilized with a combination of xylazine (0.2 mg/kg of body weight, IM) and ketamine (1 to 1.5 mg/kg of body weight, IM). Ten of the African elephants were allowed to remain recumbent for 30 minutes and the remaining 5 elephants, for 45 minutes before they were given tolazoline (0.5 mg/kg of body weight, IV). For the group of 15, the mean induction time (the time required from injection of the xylazine-ketamine combination until onset of recumbency) was 14.2 +/- 4.35 minutes (mean +/- SD), and standing time (the time required from the tolazoline injection until the elephant stood without stimulation or assistance) was 2.8 +/- 0.68 minutes. All of the elephants were physically stimulated (by pushing, slapping, shouting) before they were given tolazoline, and none could be aroused. After tolazoline was given and the elephant was aroused, relapses to recumbency did not occur. Recovery was characterized by mild somnolence in an otherwise alert and responsive animal. Failure (no arousal) rates were 0% (95% confidence interval, 0 to 0.3085) for elephants given tolazoline after 30 minutes of recumbency and 100% for elephants that were not given tolazoline. There was no significant (P less than 0.05) difference in standing time 30 or 45 minutes after tolazoline injection.  相似文献   

14.
OBJECTIVE: To evaluate the effects of medetomidine and its antagonism with atipamezole in goats. STUDY DESIGN: Prospective randomized crossover study with 1 week between treatments. ANIMALS: Six healthy 3-year-old neutered goats (three male and three female) weighing 39.1-90.9 kg (60.0 +/- 18 kg, mean +/- SD). METHODS: Goats were given medetomidine (20 microg kg(-1), IV) followed, 25 minutes later, by either atipamezole (100 microg kg(-1), IV) or saline. Heart and respiratory rate, rectal temperature, indirect blood pressure, and mechanical threshold were measured, and sedation and posture were scored and blood samples obtained to measure epinephrine, norepinephrine, free fatty acids, glucose, and cortisol concentrations at baseline (immediately before medetomidine), 5 and 25 minutes after medetomidine administration, and at 5, 30, 60, and 120 minutes after the administration of antagonist or saline. Parametric and nonparametric tests were used to evaluate data; p < 0.05 was considered significant. RESULTS: Medetomidine decreased body temperature, heart rate, and respiratory rate and increased mean arterial blood pressure, cortisol, and glucose. Recumbency occurred 89 +/- 50 seconds after medetomidine administration. All goats were standing 86 +/- 24 seconds after atipamezole administration whereas all goats administered saline were sedate and recumbent at 2 hours. Tolerance to compression of the withers and metacarpus increased with medetomidine. From 5 to 120 minutes after saline or atipamezole administration, there were differences in body temperature, glucose, and cortisol but none in heart rate or blood pressure. Three of the six goats receiving saline developed bloat; five of six urinated. After atipamezole, four of six goats developed piloerection and all goats were agitated and vocalized. CONCLUSION: At the doses used, atipamezole antagonized the effects of medetomidine on recumbency, sedation, mechanical threshold, and the increase in glucose. Atipamezole increased the rate of return of cortisol toward baseline, and prevented further decline in rectal body temperature. CLINICAL RELEVANCE: Atipamezole may be used to antagonize some, but not all effects of medetomidine.  相似文献   

15.
The effects of xylazine on heart rate (HR) and mean arterial blood pressure (ABP) were studied in 5 conscious male dogs. An IV injection of xylazine (1 mg/kg) caused a decrease in HR, which was accompanied by sinus arrhythmia. Xylazine administration also caused an initial increase in ABP, which was followed by a decrease. Atropine sulfate (0.045 mg/kg, IM) increased both the ABP and HR, but prevented xylazine-induced bradycardia only in 3 of 5 dogs. The other 2 dogs had to be given a supplemental dose of atropine sulfate (0.01 mg/kg, IV) before xylazine-induced bradycardia was antagonized. In addition, atropine sulfate potentiated xylazine-induced hypertension for 60 minutes. Yohimbine, an alpha 2-adrenoreceptor blocking agent, given IV at a dosage of 0.1 mg/kg, antagonized hypertension, hypotension, and bradycardia induced by xylazine. In addition, doxapram HCl, given IV at a dosage of 5.5 mg/kg, antagonized bradycardia but potentiated xylazine-induced hypertension, and an IV injection of 4-aminopyridine at a dosage of 0.5 mg/kg did not affect the cardiovascular actions of xylazine. It was concluded that atropine sulfate at the IM dosage of 0.045 mg/kg may be insufficient to antagonize xylazine-induced bradycardia but may potentiate xylazine-induced hypertension, and yohimbine may be useful in antagonizing these untoward reactions associated with xylazine administration. Doxapram and 4-aminopyridine were not found to be beneficial.  相似文献   

16.
OBJECTIVE: To determine sedative and cardiorespiratory effects of i.m. administration of medetomidine alone and in combination with butorphanol or ketamine in dogs. DESIGN: Randomized, crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs were given medetomidine alone (30 micrograms/kg [13.6 micrograms/lb] of body weight, i.m.), a combination of medetomidine (30 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or a combination of medetomidine (30 micrograms/kg, i.m.) and ketamine (3 mg/kg [1.36 mg/lb], i.m.). Treatments were administered in random order with a minimum of 1 week between treatments. Glycopyrrolate was given at the same time. Atipamezole (150 micrograms/kg [68 micrograms/lb], i.m.) was given 40 minutes after administration of medetomidine. RESULTS: All but 1 dog (given medetomidine alone) assumed lateral recumbency within 6 minutes after drug administration. Endotracheal intubation was significantly more difficult when dogs were given medetomidine alone than when given medetomidine and butorphanol. At all evaluation times, percentages of dogs with positive responses to tail clamping or to needle pricks in the cervical region, shoulder region, abdominal region, or hindquarters were not significantly different among drug treatments. The Paco2 was significantly higher and the arterial pH and Pao2 were significantly lower when dogs were given medetomidine and butorphanol or medetomidine and ketamine than when they were given medetomidine alone. Recovery quality following atipamezole administration was unsatisfactory in 1 dog when given medetomidine and ketamine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that a combination of medetomidine with butorphanol or ketamine resulted in more reliable and uniform sedation in dogs than did medetomidine alone.  相似文献   

17.
Eight free-ranging axis deer (Axis axis) were captured in drive nets and injected with xylazine (3.4±0.1 mg/kg; mean ±SEM) intramuscularly using a hand-held syringe. Xylazine induced complete immobilization and sedation in three animals, heavy sedation in three, and moderate sedation in two. The mean induction time was 10.4±1.0 min. The mean rectal temperature, heart and respiratory rates of immobilized animals were 39.2±0.4°C, 75.5±6.5 beats/min and 62.1±4.2 breaths/min, respectively.All the animals were given atipamezole intravenously for reversal. The mean time from injection of xylazine to administration of atipamezole was 37.8±4.6 min. A dose ratio (w/w) for xylazine:atipamezole-HCl of 10:1 was used. The mean time from injection of atipamezole to mobility was 2.41±0.58 min.Atipamezole given intravenously effectively antagonized xylazine-induced sedation in axis deer. Only one animal showed signs of overalertness after reversal and no cases of resedation were observed.Abbreviations i.m. intramuscular(ly) - i.v. intravenous(ly) - SEM standard error of the mean  相似文献   

18.
A combination of ketamine and xylazine (88.9 mg of ketamine/ml and 11.1 mg of xylazine/ml) given IM (85.5 +/- 3.4 mg of ketamine/kg of body weight and 10.6 +/- 0.5 mg of xylazine/kg) or subcutaneously (85.6 +/- 4.0 mg of ketamine/kg and 10.7 +/- 0.7 mg of xylazine/kg) induced effective surgical anesthesia for 20 to 30 minutes in Richardson's ground squirrels. Use of ketamine alone (86 +/- 7 mg/kg, IM), a droperidol and fentanyl combination (2.6 +/- 0.4 mg of droperidol/kg and 52 +/- 8 micrograms of fentanyl/kg, IM), or sodium pentobarbital (50 +/- 2 mg/kg, intraperitoneally) did not induce surgical anesthesia, but did induce depressed respiratory rates in the squirrels.  相似文献   

19.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Serum insulin and plasma glucose concentrations were determined in 8 mares. Four IV treatments were studied: xylazine (1.1 mg/kg of body weight); yohimbine (0.125 mg/kg); yohimbine (0.125 mg/kg) followed 5 minutes later by xylazine (1.1 mg/kg); and 5 ml of isotonic saline solution as a control. Blood samples were collected before (time 0) and at 5, 15, 30, 60, 120, and 180 minutes after drug administration. Serum insulin concentration decreased and plasma glucose concentration increased in mares given xylazine. Plasma glucose concentration was unchanged in control mares and in mares given yohimbine or yohimbine followed by xylazine. Serum insulin concentration was unchanged in mares given saline solution, but transiently increased in mares given yohimbine alone. Treatment with yohimbine prevented xylazine-induced hypoinsulinemia and hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号