首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
油菜高效转化系统的研究   总被引:17,自引:1,他引:16  
林良斌  官春云 《作物学报》1999,25(4):447-450
以甘蓝型油菜湘油13为试验材料,运用子房注射法将BT毒蛋白基因导入油菜。在授粉后第20小时至第30小时用自制的微玻针从子房中部注射0.5~1.5μg外源DNA,以高达12.8%的频率获得抗卡那霉素植株。分子杂交分析证明BT毒蛋白基因已整合到油菜基因组中,转化频率为1.6%,表明子房注射法是一种有效、实用的油菜遗传转化方法。  相似文献   

2.
小麦原生质体的电激介导基因转移   总被引:7,自引:0,他引:7  
从小麦品种“Bodalin”胚性悬浮细胞分离出原生质体,通过电激将质粒PBC1DNA(携带β-葡萄糖苷酸酶(GUS)标记基因和潮霉素抗性基因hph)导入原生质体。采用BTX电激系统和ASP电激缓冲液,最佳电激条件为300V(750V/cm)和50ms(约1000μF),转化的原生质体内GUS的活性最高;质粒DNA的有效使用浓度为25μg/ml。电激处理后,原生质体培养2~3天,GUS基因表达最强,宜于检测其瞬时表达;牛胸腺DNA可协助提高GUS基因的导入效果。质粒PBC1DNA处理的原生质体培养于添加潮霉素的KMP培养基。经4个月抗性筛选,选择获得15个潮霉素抗性克隆  相似文献   

3.
影响谷子愈伤组织基因枪转化的因素   总被引:12,自引:1,他引:12  
通过Gus基因在谷子胚性愈伤组织中的瞬时表达检测,分析了影响谷子愈伤组织基因枪转化效率的几个因素,钨粉的包被质粒DNA用量以3μg/mg钨粉,CaCl2浓度1.5mol/L亚精胺浓度40mmol/L为最佳,过高的DNA,CaCl2和亚精胺加入量均显著降低转化率JQ-700基因枪样品室高度7cm,轰击速度400~450m/s转化,较其它速度和样品定工下转化Gus基因表达率高;每次转化的愈伤组织用量对  相似文献   

4.
玉米3种非组培转基因方法转化外源bar基因研究   总被引:11,自引:0,他引:11  
本试验用3种非组培型转基因方法,即花粉介导、子房注射、萌动种胚法在玉米上转化bar基因,经大田筛选及PCR和PCR-Southern检测,证明均可获得转化植株。还分析了3种方法的转化机理,并通过转化率与操作简便程度的比较,认为花粉介导优于萌动种胚法,二者又优于子房注射法。  相似文献   

5.
烟草叶绿体转化载体的构建及转基因植株的获得   总被引:12,自引:2,他引:10  
邹竹荣  张中林 《作物学报》1998,24(4):410-415
选择烟草叶绿体基因组同源片段rp12-trnH-pshbA和trnK-ORF509A,及aadA抗壮观霉素基因,构建烟草叶绿体转化载体pTRZ,制备pTRZDNA金粉子弹,通过基因枪轰击烟草幼苗叶片,经壮观霉素筛选获得了愈伤组织和转化再生植株,对烟草叶绿体转化植株进行PCR和Southern分析,结果证明其中No13,16,23为整入了外源aadA的叶绿体转基植株,同时其子代呈现壮观霉素抗性aaD  相似文献   

6.
DNA浓度及注射时间对苹果花粉管通道法基因转化率的影响   总被引:2,自引:0,他引:2  
通过花粉管通道法,将携带CBF3和GUS基因的pWBVec10a质粒DNA导入苹果。坐果后70d左右采收种子,将收获的种子进行离体培养,培养基为MS+BA0.2mg/L+GA2.0mg/L,附加蔗糖50g /L,琼脂6 g/L,培养40d后对转化子叶进行GUS染色检测。结果表明,最佳注射时间为授粉后11~24h之间。随着注入外源DNA浓度的增加,坐果率逐渐降低,DNA浓度为500μg/ml时,坐果率可达3.1%;DNA浓度为1000μg/ml时GUS基因阳性表达率可达12.5%。  相似文献   

7.
授粉品种对砀山酥梨坐果及果实萼片宿存的影响   总被引:3,自引:0,他引:3  
为明确砀山酥梨较高的坐果花朵序位和脱萼率高的授粉品种,以12个不同梨品种为授粉品种,通过田间试验,研究了不同品种授粉对砀山酥梨不同花朵序位坐果率、花萼宿存的影响,为砀山酥梨优质高效生产提供技术依据。试验结果表明:不同序位花朵以第3序位坐果率最高;不同方位花朵坐果率无显著差异。不同授粉品种试验结果,红酥脆授粉坐果率最高,达70.30%;紫酥授粉坐果率最低,为25.24%,不同品种授粉坐果率差异达显著水平。不同品种授粉,果实脱萼率以新世纪为最高,黄冠次之,茌梨最低。  相似文献   

8.
桃花粉管通道法转基因技术的初步研究   总被引:2,自引:0,他引:2  
以曙光为试材,对桃花粉管通道法转基因技术进行探索性研究,结果表明:(1)活体人工授粉后,24h花粉开始在柱头上萌发授粉后48h已有大量的花粉管长至花柱上端;授粉后96h大量的花粉管生长至花柱的中部;授粉后144h大量的花粉管到达花柱基部。(2)确定外源DNA的注射时间为人工授粉后的144h;花柱横切滴加法注射方式不适用于桃;当外源质粒DNA浓度为0.2 mg/l时,发育期内其坐果率都显著高于其它浓度水平。  相似文献   

9.
豇豆胰蛋白酶抑制剂转基因棉花的获得   总被引:22,自引:10,他引:22  
利用根癌农杆菌(Agrobacteriumtumefaciens)介导法将豇豆胰蛋白酶抑制剂(Cow-peaTrypsinInhibitor,CpTI)基因转移进入棉花(GosypiumhirsutumL.)。棉花幼苗的下胚轴与携带有CpTI基因和Npt-Ⅱ基因的根癌农杆菌共培养,在选择培养基上诱导出了卡那霉素抗性(Kmr)愈伤组织。选择Npt-Ⅱ阳性的胚性愈伤组织在胚状体诱导培养基上进行胚状体诱导,继而在分化培养基上进行植株分化,最终获得了再生棉花植株。经Npt-Ⅱ分析、PCR及Southern检测证明,外源CpTI基因和标记基因(Npt-Ⅱ基因)存在于转化棉株及其后代中。抗棉铃虫(Heliothisarmigera)生物活性检测表明转基因植株后代具有明显的抗棉铃虫能力。  相似文献   

10.
用正交设计法研究了预处理和4种外源激素对诱导黄瓜未授粉子房胚状体发育的影响。结果显示,诱导黄瓜大孢子发育的最佳培养条件是:36℃3 d 0.5 mg/L NAA 2.0 mg/L KT 1.5 mg/L BA,高温36℃预处理对再生植株的诱导率明显高于低温的预处理,且2,4-D,NAA和BA对胚状体的诱导有促进作用。  相似文献   

11.
Autotoxicity restricts reseeding of alfalfa (Medicago sativa L.) after alfalfa until autotoxic chemical(s) breaks down or is dispersed into external environments. A series of aqueous extracts from leaves, stems, roots and seeds of alfalfa ‘Vernal’ were bioassayed against alfalfa seedlings of the same cultivar to determine their autotoxicity. The highest inhibition was found in the extracts from the leaves. Extracts at 40 g dry tissue l?1 from alfalfa leaves were 15.4, 17.5 and 28.7 times more toxic to alfalfa root growth than were those from roots, stems and seeds, respectively. A high‐performance liquid chromatography (HPLC) analysis with nine standard compounds showed that the concentrations and compositions of allelopathic compounds depended on the plant parts. In leaf extracts that showed the most inhibitory effect on root growth, the highest amounts of allelochemicals were detected. Among nine phenolic compounds assayed for their phytotoxicity on root growth of alfalfa, coumarin, trans‐cinnamic acid and o‐coumaric acid at 10?3 m were most inhibitory. The type and amount of causative allelochemicals found in alfalfa plant parts were highly correlated with the results of the bioassay, indicating that the autotoxic effects of alfalfa plant parts significantly differed.  相似文献   

12.
Development of onion (Allium cepa L., cv. ‘Early Cream Gold’) seed under cool climate conditions in Tasmania, Australia occurred over a longer duration than previously reported, but similar patterns of change in yield components were recorded. In contrast to previous studies, umbel moisture content declined from 85 to 67 % over 57 days while seed moisture content decreased from 85 to 31 %. Seed yield continued to increase over the duration of crop development, with increasing seed weight compensating for seed loss resulting from capsule dehiscence in the later stages of maturation. Germination percentage was high and did not vary significantly from 53 to 77 days after full bloom (DAF), but mean germination time declined and uniformity of germination increased significantly over the same time period. The percentage abnormal seedlings declined with later harvest date, resulting in highest seed quality at 77 DAF. The results of this study suggest that the decision to harvest cool climate onion seed crops before capsule dehiscence will result in a loss of potential seed yield and quality.  相似文献   

13.
Jens Jensen 《Euphytica》1979,28(1):47-56
Summary The high-lysine gene in Risø mutant 1508 conditions an increased lysine content in the endosperm via a changed protein composition, a decreased seed size, and several other characters of the seed. The designation lys3a, lys3b, and lys3c, is proposed for the allelic high-lysine genes in three Risø mutants, nos 1508, 18, and 19. Linkage studies with translocations locate the lys3 locus in the centromere region of chromosome 7. A linkage study involving the loci lys3 and ddt (resistance to DDT) together with the marker loci fs (fragile stem), s (short rachilla hairs), and r (smooth awn) show that the order of the five loci on chromosome 7 from the long to the short chromosome arm is r, s, fs, lys3, ddt. The distance from locus r to locus ddt is about 100 centimorgans.  相似文献   

14.
[Objectives]This study aimed to establish a QAMS(quantitative analysis of multi-components by single-marker)method for simultaneous determination of four phenol...  相似文献   

15.
[Objectives]To optimize the water extraction process of Chinese Herbal Compound Man Gan Ning and establish a method for its extraction and content determination...  相似文献   

16.
Progress is being made, mainly by ICARDA but also elsewhere, in breeding for resistance to Botrytis, AScochyta, Uromyces, and Orobanche; and some lines have resistance to more than one pathogen. The strategy is to extend multiple resistance but also to seek new and durable forms of resistance. Internationally coordinated programs are needed to maintain the momentum of this work.Tolerance of abiotic stresses leads to types suited to dry or cold environments rather than broad adaptability, but in this cross-pollinated species, the more hybrid vigor expressed by a cultivar, the more it is likely to tolerate various stresses.  相似文献   

17.
T. Visser  E. H. Oost 《Euphytica》1981,30(1):65-70
Summary Apple and pear pollen was irradiated with doses of 0, 50, 100, 250 and 500 krad (gamma rays) and stored at 4°C and 0–10% r.h. From the in-vitro germination percentages an average LD 50 dose of about 220 krad was estimated. For both irradiated and untreated pollen a close and corresponding lineair relationship existed between germination percentage and pollen tube growth.Irradiated pollen was much more sensitive to dry storage conditions than untreated pollen, resulting in less germination and more bursting. Apparently, irradiation caused the pollen cell membrane to lose its flexibility faster than normal. Rehydration of dry-stored, irradiated pollen in water-saturated air restored germination percentages up to their initial levels. The importance of this procedure in germination trials is stressed.  相似文献   

18.
[Objectives] To determine the optimum extraction technology for total phenols of leaves in Acanthopanax giraldii Harms.[Methods]The single factor test and ortho...  相似文献   

19.
E. Keep 《Euphytica》1986,35(3):843-855
Summary Cytoplasmic male sterility (cms) is described in the F1 hybrids Ribes × carrierei (R. glutinosum albidum × R. nigrum) and R. sanguineum × R. nigrum. In backcrosses to R. nigrum, progenies with R. glutinosum cytoplasm were either all male sterile, or segregated for full male fertility (F) and complete (S) and partial (I) male sterility. Ratios of F:I+S suggested that two linked genes controlled cms, F plants being dominant for one (Rf 1) and recessive for the other (Rf 2).Segregation for cms in relation to three linded genes, Ce (resistance to the gall mite, Cecidophyopsis ribes), Sph 3(resistance to American gooseberry mildew, Sphaerotheca mors-uvae) and Lf 1(one of two dominant additive genes controlling early season leafing out) indicated that Rf 1and Rf 2were in this linkage group. The gene order and approximate crossover values appeared to be: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% aabaqaciGacaGaamqadaabaeaafaaakeaacaWGdbGaamyzamaamaaa% baGaaiiiaiaacccacaGGWaGaaiOlaiaacgdacaGG0aGaaiiiaiaacc% caaaGaaiiiaiaacccacaGGGaGaamOuaiaadAgaliaaigdakmaamaaa% baGaaiiiaiaacccacaGGGaGaaiiiaiaaccdacaGGUaGaaiOmaiaacs% dacaGGGaGaaiiiaiaacccacaGGGaGaaiiiaaaacaWGsbGaamOzaSGa% aGOmaOWaaWaaaeaacaGGGaGaaiiiaiaacccacaGGGaGaaiiiaiaacc% cacaGGGaGaaiiiaiaacccaaaGaamitaiaadAgaliaaigdakmaamaaa% baGaaiiiaiaacccacaGGGaGaaiiiaiaacccacaGGGaGaaiiiaiaacc% cacaGGGaGaaiiiaiaacccacaGGGaaaaiaadofacaWGWbGaamiAaSGa% aG4maaaa!6E4D!\[Ce\underline { 0.14 } Rf1\underline { 0.24 } Rf2\underline { } Lf1\underline { } Sph3\]. Crossover values of 0.36 for Ce-Lf 1, and 0.15 for Lf 1-Sph 3were estimated from the relative mean differences in season of leafing out between seedlings dominant and recessive for Ce and Sph 3.It is suggested that competitive disadvantage of lf 1-carrying gametes and/or zygotes at low temperatures may be implicated in the almost invariable deficit of plants dominant for the closely linked mildew resistance allele Sph 3. Poor performance of lf 1- (and possibly lf 2-) carrying gametes and young zygotes during periods of low temperature at flowering might also account for the liability of some late season cultivars and selections to premature fruit drop (running off).  相似文献   

20.
Parasitic angiosperms cause great losses in many important crops under different climatic conditions and soil types. The most widespread and important parasitic angiosperms belong to the genera Orobanche, Striga, and Cuscuta. The most important economical hosts belong to the Poaceae, Asteraceae, Solanaceae, Cucurbitaceae, and Fabaceae. Although some resistant cultivars have been identified in several crops, great gaps exist in our knowledge of the parasites and the genetic basis of the resistance, as well as the availability of in vitro screening techniques. Screening techniques are based on reactions of the host root or foliage. In vitro or greenhouse screening methods based on the reaction of root and/or foliar tissues are usually superior to field screenings and can be used with many species. To utilize them in plant breeding, it is necessary to demonstrate a strong correlation between in vitro and field data. The correlation should be calculated for every environment in which selection is practiced. Using biochemical analysis as a screening technique has had limited success. The reason seems to be the complex host-parasite interactions which lead to germination, rhizotropism, infection, and growth of the parasite. Germination results from chemicals produced by the host. Resistance is only available in a small group of crops. Resistance has been found in cultivated, primitive and wild forms, depending on the specific host-parasite system. An additional problem is the existence of pathotypes in the parasites. Inheritance of host resistance is usually polygenic and its transfer is slow and tedious. Molecular techniques have yet to be used to locate resistance to parasitic angiosperms. While intensifying the search for genes that control resistance to specific parasitic angiosperms, the best strategy to screen for resistance is to improve the already existing in vitro or greenhouse screening techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号