首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In spatially heterogeneous weed infestations, variable dose technologies could be used to minimise herbicide use; high doses could be applied to reduce high‐density patches and low doses to maintain weed populations in low‐density portions of a field. To assess the potential short‐ and long‐term effects of variable herbicide dose and site‐specific management, the major weed demographic processes were described and parameterised in this study. Various doses of rimsulfuron (from 0 to 12.5 g a.i. ha?1) were applied to different densities of Sorghum halepense (0–100 plants m?2). Contrary to similar studies with other weed species, higher herbicide efficacy was not observed at low densities, suggesting that the same rimsulfuron dose should be applied regardless of the S. halepense density. The highest percentage of control was obtained with the full rimsulfuron dose. However, it did not guarantee a decrease of the infestation in the following season in the field areas where the initial S. halepense density was lower than 60 plants m?2. Reduced doses of rimsulfuron to control S. halepense cannot be recommended based on our results.  相似文献   

2.
The economic benefits of using site‐specific weed management (SSWM) are related to the proportion of the field that is weed‐infested, the number of weed patches and the spatial resolution of sampling and spraying technologies. In this paper we simulate different combinations of these factors using parameter values obtained for Avena sterilis ssp. ludoviciana growing in Spanish winter barley crops. The profitability of SSWM systems increased as the proportion of the field infested by this weed decreased and when patch distribution was more concentrated. Under most of the conditions tested, positive net returns for SSWM were obtained when the weed‐infested area was smaller than 30%. The highest net return occurred using a 12 m × 12 m mapping and spraying resolution. The critical parameter that determined the economic viability of patch mapping and spraying resolution was the technology costs. The site specific strategy was economically superior to the standard strategy (overall herbicide application) in most cases. However, the differential between the two strategies decreased when the number of patches and the resolution of mapping and spraying increased, such that the highest net returns were obtained with a single patch covering 14% of the field and using a 12‐m mapping and spraying resolution; whereas the worst net returns were obtained for all patch numbers when 64% of the field was infested and a 3‐m mapping and spraying resolution was used.  相似文献   

3.
Seed populations of Avena sterilis ssp. ludoviciana (Durieu) Nyman were monitored in a naturally occurring infestation throughout its life cycle. Considering the large weed population present (298panicles m?2), total seed production was relatively low: 3838 seeds m?2. Only 68% of these seeds were recovered from the soil surface and a further 3% were removed with wheat grain and straw during harvest operations. The numbers of seeds from the stubble between mid-July and mid-September were relatively low (10%). Ploughing the stubble in October buried most of the recently produced seed rain and resulted in a relatively uniform vertical distribution of the seedbank. Maximum seed persistence in the soil ranged from 27 to 43 months (depending on the experimental technique used to do the study). Seed decline followed an exponential pattern on a yearly basis, with the greatest decline taking place between October and April (57–90% in year 1 and 10–40% in year 2), Between May and September the buried seed populations remained practically constant. Seedbank depletion was primarily due to seedling production (25%) and ‘lethal’ germination (24%). Although the depth of burial had very little effect on seed survival, the mode of seed disappearance was closely related to their depth in the soil. Seed depletion through ‘lethal’ germination increased with increasing depth in the soil, whereas depletion through seedling emergence decreased with increasing depth.  相似文献   

4.
Thresholds for winter wheat weed control have been determined for different herbicides or mixtures effective against individual weed species. For Avena sterilis L. subsp. ludoviciana (Durieu) Nyman the economic threshold was between 7 and 12 plants m?2, for Alopecurits myosuroides Hudson and Lolium multiflorum Lam. it varied between 25 and 35 plants m?2, while for Bromus sterilis L. the values were just under 40 plants m?2. For Galium aparine L. the threshold was as low as 2 plants m?2, while for Vicia sativa L. it was between 5 and 10 plants m?2. Within the same species the different values of economic threshold result from the different costs and efficacy of herbicides. Nitrogen fertilization was important: in its absence, the competitiveness of B. sterilis and G. aparine was negligible, and it was not possible to calculate an economic threshold for some of the treatments which could not be justified economically. Estimation de seuils économiqu.es de désherbage chez le blé d'hiver Les seuils économiques de désherbage du blé d'hiver ont été determinés pour différents herbicides, seuls ou en mélanges, pour plusieurs espèces demauvaises herbes. POUT Avena sterilis L. subsp. ludoviciana (Durieu) Nyman, le seuil économique était compris entre 7 et 12 plantes m?2. PourAlopecurus myosuroides Hudson et Lolium multiflorum Lam., il variait entre 25 et 35 plantes m?2 et était juste au-dessous de 40 plantes m?2 pour Bromus sterilis L. Pour Galium aparine L., le seuil était2 plantes m?2 et était compris entre 5 et 10 plantes m?2 pour Vicia sativa L. Les différences de seuil pour une même espèce sont dues aux différences de coût et d'ef-ficacité des herbicides. Le rôle de la fertilisation azotVe Vtait important: en son absence, le pou-voir compVtitif de B. sterilis et de G. aparineétait négligeable, et il n'était pas possible de calculer de seuil économique pour certains traitements, qui ne pouvaient se justifier économiquement. Bestimmung von wirtschaftlichen Schadensschwel-lenfiirdie Unkrautbekdmpfung in Winterweizen Für verschiedenen Herbizide und -mischungen wurden entsprechend ihrer Wirksamkeit gegenüber bestimmten Unkrautarten Schadensschwellen zur Unkrautbekämpfung inWinterweizen bestimmt. Für Avena sterilis L. spp. ludoviciana (Durieu) Nyman lag die Schadensschwelle zwischen 7 und 12 Pflanzen m?2, fur Alopecurus myosuroides Hudson und Lolium multiflorum Lam. variierte sie zwischen 25 und 35 Pflanzen m?2, während die Werte für Bromus sterilis L. bei knapp 40 Pflanzen m?2 lagen. Bei Galium aparine L. war die Schadensschwelle ganz niedrig, nämlich 2 Pflanzen m?2, während sie für Vicia sativa L. zwischen 5 und 10 Pflanzen m2 betrug. Fiir ein und die-selbe Art ist die okonomische Schadensschwelle je nach den Kosten und der Wirksamkeit der Herbizide unterschiedlich. Die Stickstoffdün-gung ist zu beachten: wenn sie fehlt, ist die Konkurrenz durch Bromus sterilis und Galium aparine verachlässigbar, so daß keine gerechtfertigten ökonomischen Schadensschwellen berechnet werden konnten.  相似文献   

5.
Through a detailed case study of a two‐species (Lolium rigidum and Avena sterilis) weed community at contrasting scales, this paper examined factors that affect weed distribution across space and time in a commercial wheat field in north‐east Spain. A. sterilis showed relatively stable spatial distribution and spatial structure of its population over time at large scale, with well‐defined patches, although weed density rose quickly. L. rigidum showed poorly defined patches that were not stable across time. Interaction between species could explain to some degree the spatial distribution at large scale: a negative relationship was detected between the spatial structures of both weed populations. At fine scale, both species showed a clear interaction effect from primary dispersal (more important in A. sterilis) and secondary dispersal from combine harvesting (more important in L. rigidum).  相似文献   

6.
Emergence of Avena fatua and A. sterilis ssp. ludoviciana infesting winter cereals during two years and at two sites in Aragon began after sowing in late October and continued for 23 weeks, with 75% of seedlings appearing in the first 9 weeks. The start of emergence was associated with a fall in minimum air temperature to below 9°C and a maximum of less than 20°C. Soil moisture was not limiting, and during winter flushes of seedlings tended to be associated with rises in mean temperature. In contrast with results from other latitudes, A. fatua emerged mainly in autumn at the same time as A. sterilis ssp. ludoviciana.  相似文献   

7.
The competitive interactions between Avena sterilis ssp. ludoviciana (Dur.) Nyman and winter barley have been studied, taking into consideration the densities of both species. As the density of A. sterilis increased, barley yield decreased exponentially. A 10% reduction in yield was found with wild oat densities ranging from 20–80 panicles m–2, and yield losses reached 50%, with densities of >300 panicles m–2, Barley grain yield was reduced by wild oats through a reduction in the number of fertile tillers. Climatic conditions during the growing seasons affected the response of barley to wild oat competition. In general, barley yields were relatively unaffected by seeding rates, with similar responses observed in the presence and in the absence of wild oat infestations. However, the highest yield losses were obtained with the lowest seeding rate (100 kg ha–1). Furthermore, low barley densities allowed the wild oat plants to produce more seeds, increasing the potential infestation during the following season.  相似文献   

8.
Field experiments were conducted in Iran in order to determine the interactions between the tillage system and crop rotation on weed seedling populations and crop yields from 2002 to 2005. No tillage, shallow tillage and deep tillage were the main plots and three crop sequences comprising continuous wheat (W‐W), wheat–canola–wheat–canola (C‐W) and wheat–safflower–wheat–safflower (S‐W) were the subplots. Bromus japonicus, Carthumus lanatus, Polygonum aviculare, Lolium temulentum and Avena ludoviciana were found to be the dominant species. The initial weed population in 2002 was estimated at 65 seedlings per m2 and B. japonicus (~35 seedlings per m2) was the most abundant species, followed by A. ludoviciana and L. temulentum. The dominant weed species mostly did not favor the combination of S‐W and C‐W with any tillage type. For the B. japonicus population, S‐W in combination with moldboard plowing indicated the lowest seedling population. In conclusion, the crop sequence in combination with tillage would help to control troublesome weed species. Safflower and canola were determined to be effective in reducing the grass weeds. The inclusion of these crops in rotation also increased the total revenue of the cropping systems because of the higher sale price of canola and safflower.  相似文献   

9.
Interactions between the weeds Bromussterilis L., Galium aparine L. and Papaver rhoeas L. were investigated over 3 years of continuous winter wheat (Triticum aestivum L.) across a factorial combination of organic and conventional fertilizer, and ploughing and hand-roguing contrasted with minimum tillage and herbicide. The species were sown separately and together at 50 seeds m?2 per species at the start of the experiment in October 1989. In addition, there were weed-free and background-weed controls. Weed densities were monitored at roughly monthly intervals and crop yield recorded for three seasons. B. sterilis populations increased 10-fold under minimum tillage, but declined under ploughing. Densities of P. rhoeas remained largely low. G. aparine increased on the organically fertilized minimum-tillage plots, except where B. sterilis was present; the high densities of B. sterilis reduced the population size of G. aparine. Crop yield was influenced most strongly by the fertilizer treatment in the first season, but later the density of B. sterilis was by far the most important factor; the evidence of interactive effects of the different weed species on crop yield was weak at best. Interactive effects of arable weed species can be observed, but only at very high densities, and so are unlikely to be of widespread economic importance.  相似文献   

10.
Weed seed predation is an ecosystem service, influencing weed population dynamics. The impact of weed seed predation on weed population dynamics depends on how predators respond to seed patches at the field scale. Seed predation will be most effective if the proportion of seeds predated increases with increasing size and seed density of patches. Density‐dependent rodent seed predation was measured by varying seed density and patch size in four irrigated conventionally managed cereal fields in north eastern Spain. Artificial weed seed patches were created by applying a range of Lolium multiflorum seed densities from 0 to 7500 seeds m?2 in 225 m2 patches (2008) or in patches that varied in size from 1 to 9 m2 (2009). Seed predation was estimated using seed cards and seed frames. The granivorous rodents Mus spretus and Apodemus sylvaticus caused high seed predation rates (92%) in three fields, whereas in a fourth field, it was lower (47%). Rodents responded in an inversely density‐dependent manner, but this had little biological meaning as even in patches seeded with the highest density, the input to the soil seedbank was reduced by 88%. For the period of time this experiment lasted, hardly any new seeds would have entered the seedbank.  相似文献   

11.
The abundance of Avena sterilis in dryland barley fields was studied in four Spanish provinces. During two growing seasons, differential geopositioning system (DGPS)‐geo‐referenced A. sterilis infestations were obtained in 31 fields. The majority of the infestations were concentrated in few large but irregularly shaped patches, with a higher number of smaller and more regular patches accounting for a small proportion of the infestation. A multitude of very small and irregular patches completed the inventory. The implications of this spatial structure were studied. Site‐specific adjusted‐dose herbicide application offered 61–74% potential herbicide savings. However, given the low levels of infestation and the low economic returns obtained in most of the provinces, the most profitable strategy was generally no herbicide application. Site‐specific treatments were advantageous only in high‐returns systems. Because few large patches provided the majority of the infestation, zone‐specific treatments would be advisable, until such time that weed detection and site‐specific application technologies become more efficient.  相似文献   

12.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

13.
Multiple herbicide‐resistant (MHR ) weed populations pose significant agronomic and economic threats and demand the development and implementation of ecologically based tactics for sustainable management. We investigated the influence of nitrogen fertiliser rate (56, 112, 168, or 224 kg N ha?1) and spring wheat seeding density (67.3 kg ha?1 or 101 kg ha?1) on the demography of one herbicide susceptible and two MHR Avena fatua populations under two cropping systems (continuous cropping and crop‐fallow rotation). To represent a wide range of environmental conditions, data were obtained in field conditions over 3 years (2013–2015). A stochastic density‐dependent population dynamics model was constructed using the demographic data to project A. fatua populations. Elasticity analysis was used to identify demographic processes with negative impacts on population growth. In both cropping systems, MHR seedbank densities were negatively impacted by increasing nitrogen fertilisation rate and wheat density. Overall, MHR seedbank densities were larger in the wheatfallow compared with the continuous wheat cropping system and seedbank densities stabilised near zero in the high nitrogen and high spring wheat seeding rate treatment. In both cropping systems, density‐dependent seed production was the most influential parameter impacting population growth rate. This study demonstrated that while the short‐term impact of weed management tactics can be investigated by field experiments, evaluation of long‐term consequences requires the use of population dynamics models. Demographic models, such as the one constructed here, will aid in selecting ecologically based weed management tactics, such as appropriate resource availability and modification to crop competitive ability to reduce the impact of MHR .  相似文献   

14.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions.  相似文献   

15.
An arable field was subdivided and subjected to either deep inversion ploughing or non‐inversion cultivation after viable seeds of Bromus sterilis had been sown into oilseed rape stubble. After sowing in isolated plots distributed within the field, sequences of cropping treatments for the establishment of two successive winter wheat crops were applied. Each subfield was split into an uphill and a downhill direction for soil cultivation. The field had a 10° slope. In the season following seed introduction, 2.6% of the introduced seeds had successfully germinated and established in the non‐inversion cultivation regime, when no effective graminicide was applied. Ploughing eradicated B. sterilis. Using differential global positioning system (DGPS) mapping of the whole field population, emerged plants were observed up to 8.7 m (uphill treatment) and 21.3 m (downhill treatment) of their initial source. The median distance seeds were transported was 2.3 m uphill and 4.8 m downhill. Post‐emergence application of the herbicide propoxycarbazone slightly reduced weed density and seed weight, and almost halved weed seed production. Application of fenoxaprop‐P‐ethyl was followed by higher density of plants, tillers and seeds of B. sterilis. Seed viability was unaffected by herbicide use. Thus, in the second wheat crop following seed rain, the weed population was dispersed more widely in the field, such that 20–30% of seeds were dispersed more than 5 m distance from the first year's foci of infestation. The relevance of soil cultivation to secondary dispersal of B. sterilis is discussed.  相似文献   

16.
We report on the performance of the registered herbicides picloram and metsulfuron‐methyl on the control of Campuloclinium macrocephalum (pompom weed) in grasslands. Herbicide trials in hydric and xeric grasslands were treated for three consecutive years in either summer (February) or autumn (April) and monitored for an additional 3 years after spraying ceased. Uncontrolled factors such as a host‐specific rust, fire and drought were observed from the second year of the study. Metsulfuron‐methyl and picloram did not differ in efficacy according to the timing of applications, but average mortality of marked plants was <80% expected of registered herbicides. Populations of C. macrocephalum in plots were reduced proportionately to the percentage mortality of marked plants. Picloram and metsulfuron‐methyl applied at 252 g a.i. ha?1 and 45 g a.i. ha?1, respectively, were not detectable by gas chromatography in the upper 25 cm of the soil profile during any of the sampling intervals from 0 to 56 days after treatment. Three annual applications of registered herbicide did not reduce Cmacrocephalum successfully, and it is estimated that between five (summer) to seven (autumn) annual treatments are required to reduce weed density to <1 plant per plot (25 m2). Future research should focus on rust–herbicide interactions, the role of fire in seedbank management and fire as a treatment that could be integrated with chemical control.  相似文献   

17.
Weed seeds are introduced to agronomic systems naturally or through human-mediated seed dispersal, and introduced seeds have a high chance of being resistant to selective, in-crop herbicides. However, colonisation (invasion) rates for a weed species are usually much lower than rates of seed dispersal. The current research investigated colonisation of a winter annual wheat cropping system in Western Australia by a range of winter or summer annual weed species. The weed seeds were sown (at 100 seeds/m2) directly before seeding the crop in 2016 and allowed to grow in the following 3 years of wheat. Selective herbicides were not applied, to simulate growth of weed populations if the initial seed had been resistant to herbicide. Bromus diandrus, Hordeum leporinum, Rumex hypogaeus, Sonchus oleraceus, Polygonum aviculare, Lolium rigidum, Citrullus amarus and Tribulus terrestris colonised the crop, while Dactyloctenium radulans, Chloris truncata and Salsola australis failed to establish over 3 years. The most successful weed was B. diandrus, with a plant density of 1,170/m2 by the third year and seed production of 67,740/m2. The high density of B. diandrus reduced wheat density by 76% in the third year and reduced average yield by 36%. Lolium rigidum reduced average yield by 11%, and the other weed species did not affect crop yield. Further research is required on the invasiveness of these species in other regions, but it is clear that the spread of B. diandrus to new areas or the introduction of resistant B. diandrus seeds via contaminated grain should be avoided.  相似文献   

18.
A simple mathematical model of the life-cycle of Avena fatua L. is described and used to consider the financial consequences to the farmer of controlling A. fatua infestations in winter wheat. The likely economic benefits of applying herbicides in different cultivation regimes are investigated. The sensitivity of the model to variations in herbicide performance, straw burning, initial weed infestation and the value of the wheat crop is tested. The model predicts that the highest long-term benefits will be obtained when a herbicide is applied every time wild oats exceed a density of between 2 and 3 seedlings m?2. Whether or not this results in a significant financial saving over spraying every year depends on the initial level of infestation and on the cultivation method. Whether straw is burnt or not is likely to be of little economic significance.  相似文献   

19.
A long-term study was conducted during 4 consecutive years to determine the effects of herbicides on the major demographic parameters and on the dynamics of the populations of Avena sterith ssp. ludoviciana (Durieu) Nyman growing in winter wheat crops in Central Spain. The three herbicides tested bad different effects on the life cycle of the plant. Tri-allate was moderately effective in reducing seedling recruitment and seedling survivorship, but it resulted in adult fecundities similar to or higher than, those of the check plots. Difenzoquat was highly effective in reducing plant survivorship and it consistently reduced the reproductive capacity of the survivors. Flamprop-isopropyl L was not very effective in reducing plant survivorship, but it had the largest influence on adult fecundity. Overall, although the three herbicides were able to reduce substantially (59–95%) the production of new seeds, large numbers of seeds were returned annually to the soil in all the treatments. The annual application of any of the three compounds during 4 consecutive years had a marked effect on the long-term evolution of the populations of buried seeds in the soil, emerged seedlings, mature plants and new seeds produced. Continuous herbicide application resulted in a gradual depletion of the seed bank of A. sterilis in the soil. At the end of the 4-year period, buried seed populations in the herbicide-treated plots were (61–81%). lower than those at the beginning of the experiment, and 92–95% lower than those of the check plots at the same lime. However, the seed reserves present in the treated plots were Mill high enough to require some type of control programme.  相似文献   

20.
A simulation study was conducted to examine the effect of pattern of herbicide use on development of resistance to two herbicides with different modes of action in finite weed populations. The effects of the size of the treatment area (analogous to initial weed population), germination fraction and degree of self‐pollination in the weed were investigated. The results indicate that the probability of developing resistance to one or both herbicides decreases as the size of the area/initial population decreases. For treatment areas of 100 ha or less with an initial weed seedbank of 100 seeds m?2 and initial frequencies of the resistance genes of 10?6, development of resistance to both herbicides (double‐resistance) is uncommon within 50 years for all types of weeds if both herbicides are used in all years (used in combination). If herbicides are used in alternate years (rotated) double‐resistance almost always occurs in 100 ha areas but is uncommon in areas of 1 ha or less. The results suggest that adoption of practices that limit movement of weeds in conjunction with using herbicides in combination rather than in rotation can substantially delay development of herbicide resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号