首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
选用一种分子筛(XF-1)作为吸附剂,对奶牛圈舍中的CO_2、CH_4、NH_3和H_2S进行吸附试验。用便携式气体检测仪测定风机口排出的CO_2、CH_4、NH_3和H_2S浓度,悬挂吸附剂前后测得的浓度之差即为吸附剂XF-1的吸附浓度。根据实际测得的气温、气压、风速,利用理想气体状态方程推导出公式,将ppm换算为mg/m~3。当悬挂吸附剂后测得浓度与初始浓度无差异性时停止试验。结果表明:1kg吸附剂XF-4春季可吸附CO_2 61.29g、CH_4 8.39g、NH_3 1.27g、H_2S 1.71g;夏季可吸附CO_2 59.14g、CH_4 8.02g、NH_3 1.34g、H_2S1.75g;秋季可吸附CO_2 65.76g、CH_4 8.71g、NH_3 1.64g、H_2S 1.54g,冬季可吸附CO_2 70.91g、CH_4 9.32g、NH_3 2.29g、H_2S 1.57g。吸附剂XF-1对CO_2、CH_4和NH_3的吸附质量与圈舍温度、湿度、初始浓度相关性显著或极显著(P0.05、P0.01),对H_2S的吸附质量与圈舍湿度、气体的初始浓度相关性显著(P0.05)。吸附剂XF-1在春、冬季悬挂31h,夏季、秋季悬挂30h需要更换。  相似文献   

2.
试验选用3种材料不同的分子筛作为吸附剂,对冬季奶牛圈舍中CO_2、CH_4、NH_3和H_2S吸附试验。用便携式气体检测仪检测风机口排出的CO_2、CH_4、NH_3和H_2S浓度,悬挂吸附剂的为试验组,不悬挂吸附剂的为初始。两者之差即为吸附剂XF-1、XF-2、XF-3的吸附浓度,根据实际测得的气温、气压、风速,利用理想气体状态方程推导出公式,将ppm换算为mg/m3。当试验组与初始浓度无差异性时停止试验。结果表明:1 kg XF-1吸附剂可吸附CO_261.28 g、CH_48.39 g、NH_31.27 g、H_2S 1.71g;1 kg XF-2吸附剂可吸附CO_264.91 g、CH_48.82 g、NH_31.43 g、H_2S 1.79 g;1 kg XF-3吸附剂可吸附CO_273.21 g、CH_410.06 g、NH_31.52 g、H_2S 2.05 g。结论3种吸附剂对CO_2、CH_4、NH_3和H_2S气体的吸附量与圈舍内相应气体浓度正相关性显著(P0.05),与温湿度负相关性不显著(P0.05)。吸附剂的吸附能力与总孔体积、比表面积成正比,3种吸附剂对4种气体的吸附能力均呈现XF-3XF-2XF-1。3种吸附剂在1~3 h吸附效果最好,此后缓慢下降,吸附剂XF-1悬挂31 h需要更换,吸附剂XF-2悬挂27 h需要更换,吸附剂XF-3悬挂25 h需要更换。  相似文献   

3.
为了研究外源性吸附剂对奶牛产生有害气体的吸附能力,试验选择吸附剂XF-4对夏季奶牛圈舍中CO_2、CH_4、NH_3和H_2S进行吸附试验,用便携式气体检测仪检测排风扇口排出的CO_2、CH_4、NH_3和H_2S浓度,悬挂吸附剂的为试验组,不悬挂吸附剂的为对照组,两者之差即为吸附剂XF-4的吸附浓度。根据实际测得的气温、气压、风速,利用理想气体状态方程推导出公式,将ppm换算为mg/m~3,当试验组与对照组浓度无差异性时停止试验。结果表明:1 kg吸附剂XF-4可吸附NH310.24 g、CO21.70 g,对CH_4、H_2S无吸附能力。吸附剂XF-4对NH_3和CO_2吸附量与吸附剂pH值负相关性极显著(P0.01),与温度、湿度、气体浓度相关性不显著(P0.05)。吸附剂XF-4在4~7 h对两种气体吸附效果最好,悬挂31 h需要更换吸附剂。  相似文献   

4.
本试验检验了吸附剂XF-4在冬季奶牛圈舍中对NH3和CO2的吸附效果。用便携式气体检测仪检测排风扇口排出的NH3和CO2浓度,悬挂吸附剂时测得数据为试验组,不悬挂吸附剂时测得数据为对照组,两者之差即为吸附剂XF-4的吸附浓度。当试验组与对照组浓度无差异性时停止试验。结果表明:1kg吸附剂XF-4可吸附NH3 23.65g、CO2 4.38g。吸附剂XF-4对NH3和CO2的吸附浓度与圈舍内气体浓度相关性极显著(P0.01),对NH3的吸附浓度与温度相关性极显著(P0.01),与湿度相关性不显著(P0.05);对CO2的吸附浓度与温湿度相关性均不显著(P0.05)。吸附剂XF-4在悬挂4~7h时吸附效果最好,悬挂31h需要更换吸附剂。  相似文献   

5.
CO_2、NH_3、CH_4和H_2S是牛舍内排放较多的4种温室气体,本试验使用2种成分组成有差异的球状固体分子筛吸附剂对秋季牛舍内以上4种气体进行吸附试验。设置1个对照组和2个试验组,初始条件相同,对照组为不放置吸附剂的通风扇,试验组为分别放置13X与活性氧化铝吸附剂的通风扇。结果表明:2种吸附剂的吸附能力随着时间的增加而逐渐降低,活性氧化铝吸附剂对4种气体的吸附能力较13X吸附剂更好;13X吸附剂在第24小时后需更换,活性氧化铝吸附剂在第28小时后需更换;13X吸附剂和活性氧化铝吸附剂对牛舍中CH_4、CO_2、H_2S和NH_3均表现出良好的吸附能力。  相似文献   

6.
为了研究中草药微生态制剂对控制规模化羊场羊舍有害气体及气温和相对湿度的影响,试验分为对照组、通风组和基础日粮中添加1.5%中草药微生态制剂组,分别测定了羊舍内温度、湿度、NH_3、H_2S、CO_2。结果显示,通风组气温显著低于对照组(P0.05),其它各组之间差异均不显著;通风组、中草药组湿度显著低于对照组(P0.01),其它各组之间差异均不显著;通风组、中草药组NH_3平均浓度比对照组呈明显的下降趋势,通风组、中草药组NH_3浓度极显著低于对照组(P0.01),其它各组之间差异均不显著(P0.05);在对H_2S、CO_2测定时三个试验组的变化趋势较一致,三组之间差异均不显著(P0.05)。  相似文献   

7.
试验以层叠笼密闭蛋鸡舍为研究对象,以NH_3、CO_2和颗粒物(PM2.5和PM10)及舍内温度、相对湿度为主要检测指标,采用DL-31系列检测仪连续测定,分析层叠笼密闭蛋鸡舍内CO_2、NH_3、PM2.5和PM10浓度在不同季节的日变化规律及其与环境因子之间的相互关系。结果表明:鸡舍内NH_3浓度范围为0~15.0 mg/m~3;CO_2浓度为814.2~3 509.8 mg/m~3;PM2.5浓度为0~378.7 mg/m~3;PM10浓度为0.3~1 439.9 mg/m~3。舍内CO_2、NH_3和PM2.5、PM10浓度主要受温度、相对湿度、风速、光照度等因素影响;冬、春季节,舍内NH_3浓度与颗粒物(PM2.5和PM10)浓度之间呈较显著正相关性(P0.05),夏季则呈现负相关性;冬、春、夏季CO_2浓度与颗粒物(PM2.5和PM10)浓度之间呈现较显著正相关性(P0.05),秋季则呈现负相关性;不同季节舍内PM2.5与PM10之间均表现为极显著正相关性(P0.01);春、夏两季舍内CO_2浓度和NH_3浓度呈现较显著正相关性(P0.05)。  相似文献   

8.
试验为了研究发酵床育肥猪舍与实心地面育肥猪舍有害气体的浓度变化,分别检测NH_3、H_2S及CO_2浓度,为育肥猪生态养殖,粪便除臭及环境保护提供理论依据。试验随机选取健康、体重60kg左右、品种一致的育肥猪400头平均分为两组。发酵床猪舍为试验组,实心地面猪舍为对照组,在为期一个月的试验中每天分不同的时间、高度进行NH_3、H_2S及CO_2浓度检测。在相同条件下发酵床组测得的NH_3及H_2S浓度要低于在实心地面组(P0.05);而CO_2浓度是发酵床组高于实心地面组。发酵床猪舍有效降低NH_3及H_2S的浓度,但会使CO_2浓度升高。  相似文献   

9.
通过使用两种成分组成有差异的球状固体分子筛吸附剂,在夏季牛舍进行了对引发温室效应的四种气体的吸附试验。对照组的通风扇口不放置吸附剂,两个试验组的通风扇口分别放置13X吸附剂和活性氧化铝吸附剂。通过便携式气体检测仪检测每小时对照组与试验组通风扇口各种气体浓度数据,以试验组和对照组的测值差,作为两种不同吸附剂的吸附浓度。结果表明,两种不同吸附剂吸附能力随着时间的增加而逐渐降低,13X吸附剂在第25h后需更换,活性氧化铝吸附剂在第29h后需更换。13X吸附剂和活性氧化铝吸附剂对牛舍中CH_4、CO_2、H_2S和NH_3四种气体都表现出了良好的吸附能力。  相似文献   

10.
为了研究封闭式猪舍内环境参数的变化,改善猪舍内环境,试验在夏季和冬季进行,每个季节选取3栋建筑结构完全相同的产仔哺乳舍,每天测定6:00、11:00、18:00哺乳仔猪舍内主要环境参数变化。结果表明:冬季舍内CO_2、NH_3、H_2S浓度均极显著高于夏季(P0.01),夏季舍内温度极显著高于冬季(P0.01);06:00时舍内CO_2、NH_3、H_2S浓度均极显著高于11:00和18:00(P0.01),11:00和18:00之间差异不显著(P0.05);06:00时舍内温度极显著低于11:00和18:00(P0.01),11:00和18:00之间差异不显著(P0.05);舍1内CO_2浓度极显著高于舍2和舍3(P0.01),舍2显著高于舍3(P0.05);舍2和舍3内NH_3浓度极显著高于舍1(P0.01),舍2与舍3之间差异不显著(P0.05);H_2S浓度各舍之间变化范围不大,未达到显著水平(P0.05);舍3温度极显著高于舍1和舍2(P0.01),舍1与舍2之间差异不显著(P0.05)。说明舍内有害气体的浓度呈现出明显的季节性特征,冬季舍内有害气体浓度最高,不同猪舍内有害气体浓度不同。  相似文献   

11.
袁学军  刘建秀 《草业科学》2007,24(11):82-86
用0、2、4、8和12 g/L NaH2PO4对盆栽假俭草Eremochloa ophiuroides优良品系E-126为材料进行处理,研究其对提高假俭草的抗寒性和绿期的影响.结果表明,在低温条件下,NaH2PO4处理与对照相比,不仅降低了假俭草电导率,抑制了叶绿素的分解,而且提高了可溶性糖和脯氨酸的含量,从而提高了抗寒性,延长了青绿期,其中以处理8 g/L效果最好,可延长假俭草绿期16~17 d.  相似文献   

12.
苗雪原 《中国饲料》2006,(14):35-36
H2O2-H2SO4-混合催化剂法可使饲料试样在35 min内即可分解完全,极大提高了饲料粗蛋白质检测效率.该法操作简单、快速.  相似文献   

13.
对奶牛乳房炎现状、围产期奶牛雌激素(E2)和孕酮(P4)变化对机体免疫的调节、Toll样受体(TLRs)和NOD样受体(NLRs)在抗感染作用中的相关研究进行综述,探讨围产期奶牛乳房炎的高发与E2、P4的免疫调节作用及TLRs、NLRs介导的天然免疫三者间的关系。  相似文献   

14.
本研究通过建立人肝微粒体体外孵育试验,考察泰妙菌素对4种CYP450亚酶的探针底物睾酮、非那西丁、氯唑沙宗、氢溴酸右美沙芬代谢的影响,以反映泰妙菌素对人CYP3A4、CYP1A2、CYP2E1、CYP2D6酶活性的作用。试验分为3组:药物试验组、阳性对照组(不含NADPH)、阴性对照组(不含CYP450抑制剂),孵育体系为100 μL,孵育试验在96孔板中进行。终止反应后使用高效液相色谱串联质谱仪(LC-MS/MS),以内标法检测96孔板中孵育液的剩余探针底物浓度。根据药物试验组与阴性对照组的探针药物代谢浓度之比,计算药物试验组的探针药物代谢率。使用Graphpad Prism 6.0软件,以药物试验组相对代谢率为纵坐标,药物浓度对数值为横坐标作图,计算试验组药物IC50值。针对泰妙菌素与CYP3A4的孵育试验设置多个孵育时间点观察孵育时间对IC50值的影响。试验结果显示,酮康唑对CYP3A4的IC50值为0.044 μmol/L,α-萘黄酮对CYP1A2的IC50值为0.030 μmol/L、4-甲基吡唑对CYP2E1的IC50值为0.022 μmol/L、奎尼丁对CYP2D6的IC50值为0.096 μmol/L。泰妙菌素对CYP1A2及CYP2D6的IC50值均大于50 μmol/L,对CYP2E1的IC50值为0.045 μmol/L,对CYP3A4的IC50值为1.609 μmol/L。延长泰妙菌素与CYP3A4的孵育时间(10~50 min)后,泰妙菌素对CYP3A4的IC50值由1.609 μmol/L增加至 8.657 μmol/L。本研究中4种亚酶常用抑制剂的IC50值与参照值相近,表明所建立人肝微粒体体外孵育试验方法可靠。以IC50值为指标显示泰妙菌素对CYP1A2和CYP2D6无抑制作用,对CYP2E1和CYP3A4存在强抑制作用,泰妙菌素可能是CYP3A4的可逆性抑制剂。  相似文献   

15.
在温室条件下用不同浓度的NaCl和Na2SO4(60mmol/L、120mmol/L、180mmol/L、240mmol/L、300mmol/L)对冰草进行胁迫,结果表明:在两种盐处理下随着胁迫浓度递增,冰草的MDA含量增加,生物量、根冠比、叶绿素含量、脯氨酸含量和POD活性都呈先增后降的变化趋势;胁迫浓度为300mmol/L时,冰草幼苗的生物量、根冠比、叶绿素含量、POD活性和脯氨酸含量显著下降,MDA含量达到最大值.120mmol/L以下的低浓度盐胁迫对冰草生长有一定的促进作用,NaCl对冰草的胁迫作用大于Na2SO4.  相似文献   

16.
【目的】通过对猪圆环病毒Ⅱ型(PCV2)体外感染3D4/2细胞浓度、时间与细胞炎症水平进行探讨,建立PCV2体外感染3D4/2细胞炎症反应模型,以期为后期药物调控PCV2诱发3D4/2细胞炎症反应的研究奠定基础。【方法】将3D4/2细胞分为对照组及100、10-1、10-2和10-3 PCV2感染组,每组3个重复。对照组用DMEM培养,各PCV2感染组用不同稀释倍数PCV2液培养,2 h后均更换为含5%胎牛血清(FBS)的DMEM维持液进行培养,培养4、8、12和24 h后分别收集细胞及细胞上清液。采用Griess法检测一氧化氮(NO)水平,DCFH-DA荧光探针法检测活性氧(ROS)水平,酶标法检测还原型谷胱甘肽(GSH)水平,分光光度法检测黄嘌呤氧化酶(XOD)和髓过氧化物酶(MPO)活性,ELISA法测定白细胞介素-1β(IL-1β)、IL-6、肿瘤坏死因子-α(TNF-α)、IL-10、γ干扰素(IFN-γ)、IL-8、单核细胞趋化蛋白1(MCP-1)以及环氧合酶1(COX-1)和COX-2的分泌水平。【结果】100至10-3 PCV2作用4、8、12和24 h均能够成功感染3D4/2细胞。与对照组相比,100 PCV2在感染3D4/2细胞4、8、12、24 h后ROS水平均极显著升高(P<0.01),10-1至10-3 PCV2感染3D4/2细胞8、12、24 h后ROS水平显著或极显著升高(P<0.05;P<0.01);100至10-3 PCV2感染3D4/2细胞8、12、24 h后,细胞内NO浓度及MPO活性显著提高(P<0.05),细胞上清液中的IL-1β、IL-6、TNF-α、IL-10、IFN-γ、IL-8和MCP-1水平及COX-1活性均显著或极显著升高(P<0.05;P<0.01),其中100 PCV2感染3D4/2细胞后,各炎症因子水平上升最显著,且随着时间的延长,NO浓度逐渐升高,XOD活性逐渐降低。【结论】PCV2可诱导3D4/2细胞炎症反应,且100 PCV2体外感染3D4/2细胞4~12 h是建立炎症模型的最佳条件。  相似文献   

17.
以陇燕3号为试验材料,喷施低、中和高3个剂量(450, 750和1050 mL·hm-2)的2,4-D丁酯,在药后1,7,14,21,28 d以及开花期、灌浆期植株和收获后籽粒中测定2,4-D丁酯残留量,探讨不同剂量2,4-D丁酯处理对杂草防效、燕麦的安全性、株高和产量的影响。结果表明,2,4-D丁酯对燕麦安全性、产量及田间杂草防效影响显著。高剂量下燕麦出现顶端下垂、叶尖发红和药斑等药害现象。杂草防效随2,4-D丁酯施用剂量的增加而提高。高剂量除草剂喷施后45 d,株防效较药后30 d仍有小幅上升,鲜重防效达到90%以上。3个剂量均使株高有一定程度的降低,高剂量下燕麦株高较对照降低了10.49%。低剂量下干草产量有所降低,但与对照差异不显著(P>0.05),籽粒增产22.64%;中剂量下燕麦干草产量呈增加趋势,籽粒增产40.57%;高剂量下,燕麦干草产量下降了8.85%(P<0.05)。2,4-D丁酯及2,4-D在皮燕麦中的残留量随除草剂施用剂量的增加而上升。施药28 d后,高浓度下燕麦中2,4-D丁酯和2,4-D残留量最高,达0.168 和0.011 mg·kg-1,显著(P<0.05)高于低浓度处理。综上所述,本试验条件下,750 mL·hm-2为皮燕麦田2,4-D丁酯的最佳使用剂量。  相似文献   

18.
研究利用3种不同的方法超数排卵处理沼泽型水牛,比较研究不同方法处理时水牛血清雌二醇(E2)、孕酮(P4)浓度变化规律。结果表明:进口FolltropinR○-V、国产FSH和PMSG超数排卵处理沼泽型水牛,血清E2浓度峰值分别出现在氯前列烯醇(PGc)处理后的48 h([142.45±94.66)pg/mL]、72 h([87.78±29.62)pg/mL]、48 h([126.38±92.33)pg/mL];血液中P4浓度最低值分别出现在PGc处理后的48 h([0.76±0.21)pg/mL]、24 h([1.18±0.12)pg/mL]和144 h([0.82±0.06)pg/mL]。  相似文献   

19.
子宫复旧是奶牛产后生殖器官恢复的一个重要时期,复旧时间的长短会直接影响产后第一次发情的时间。本试验为研究雌激素和孕酮在子宫复旧过程中的变化规律,选择了年龄、胎次相近,健康状况良好的产后奶牛15头,应用放射免疫分析法在子宫复旧期间每3d对雌激素、孕酮测定一次,前后持续10次,由试验数据可得出,雌激素、孕酮在子宫复旧早期阶段呈下降趋势,但在18d时浓度都达到了一个峰值,至末期时雌激素水平开始下降,而孕酮水平开始逐渐上升。  相似文献   

20.
将荣昌猪外周血淋巴细胞在刀豆素A(ConA)的刺激下培养24~70 h后,提取总RNA,应用RT-PCR技术扩增白细胞介素-2(IL-2)和白细胞介素-4(IL-4)cDNA,克隆到pMD18-T载体并测序。结果表明:克隆的IL-2 cDNA全长为522个碱基,ORF为465个碱基,编码154个氨基酸,与GenBank公布的猪IL-2比对同源性均为99.8%;克隆的IL-4 cDNA全长411个碱基,ORF为402个碱基,编码133个氨基酸,与GenBank公布的猪IL-4比对同源性均在98.0%以上,从而证实成功克隆了荣昌猪IL-2和IL-4基因cDNA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号