首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

2.
Five isonitrogenous (420 g kg?1 crude protein) and isoenergetic (16.3 kJ g?1) practical diets were formulated to contain fish oil (FO), Kilka fish oil (KFO), linseed (LO), canola (CO) and soybean (SBO) oils fed to juveniles of three‐spot gourami (Trichopodus trichopterus) (initial weight 1 ± 0.03 g) three times per day to apparent satiation for 14 weeks. Results showed the mean final weight of brooders was not significantly affected by dietary oil sources. Specific growth rate for fish fed in SBO and CO diets was statistically higher than for fish fed diet LO. Fish fed diets CO and KFO showed in significantly higher GSI value compared with other diets. Absolute fecundity was greatest in fish fed diets KFO and CO, which significantly differ with other treatments. Except for KFO diet, high fertilization percentages (87.3–93.45%) were observed in other treatments. Fatty acid composition of muscle and egg was found to be positively correlated with their respective dietary lipid sources. High levels of EPA, DHA and n‐3 HUFA in brooders fed diet FO negatively affect egg quality parameters. Therefore, the results demonstrated that vegetable oil‐based diets (CO, SBO and LO, respectively) can positively affect on growth performance of juveniles compared with fish oil‐based diets. Furthermore, CO and LO diets, respectively, showed positive effects on reproductive performance in Ttrichopterus compared with fish oil diets during experimental period under controlled conditions.  相似文献   

3.
A 60‐day feeding trial was conducted to determine the effects of different dietary vitamin C levels on growth performance, immune response and antioxidant capacity of loach juveniles. Six isonitrogenous (58.6% of crude protein), isoenergetic (17.5 kJ g?1) practical diets supplemented with 0 (VC0), 100 (VC100), 200 (VC200), 500 (VC500), 1000 (VC1000) and 5000 mg kg?1 (VC5000) of VC (35% ascorbic acid equivalent) were fed to fish (mean initial weight 0.11 ± 0.02 g) in triplicate. Results showed that fish fed VC0 diet had significantly lower body weight gain (BWG) and survival rate (SR). However, BWG and SR improved significantly in fish fed VC100 and VC200 diet respectively. Whole body ascorbic acid concentration increased with incremental dietary VC levels from 0 to 100 mg kg?1. The activity of mucus alkaline phophatase was significantly increased by the dietary VC level. Incremental levels of VC significantly reduced activities of glutathione peroxidase (GPx) and catalase. Moreover, fish fed diets containing more than 100 mg kg?1 VC significantly down‐regulated the superoxide dismutase and GPx mRNA expression in liver. Meanwhile, the expressions of liver heat shock protein (HSP70) and nuclear factor‐erythroid 2‐related‐2 (Nrf2) were affected by fish fed diets containing VC from 100 to 5000 mg kg?1. In conclusion, VC requirement of loach juveniles for optimum growth and functionally preventing lipid peroxidation was more than 200 mg kg?1 of diet. Moreover, high dose of VC supplementation did not show any detrimental effects on loach growth performance.  相似文献   

4.
The effects of dietary protein‐energy levels on the growth rate, proximate composition and production were examined in Nile tilapia, Oreochromis niloticus, at two starting weights (22.9 and 39.8 g) reared in concrete ponds for 180 days. The highest weight gain (183.1 g) was obtained with fish fed a 30% protein and 10.5 kJ g?1 diet for the small initial size and 180.2 g for a diet containing 25% protein and 12.6 kJ g?1 for the large initial size. Dressed yields (edible mass) and fillets increased to 56.9% and 52.5% in fish fed diet with 25% protein and 10.5 kJ g?1 at the initial size of 22.9 g, while fish started at 39.8 g exhibited the best values (56.5% and 52.1%) when fed the 30% protein and 10.5 kJ g?1 diet. Proximate composition of soft tissue (wet weight basis) in small fish was significantly influenced by dietary protein‐energy levels. Protein was 26.1±0.3% in fish fed the high protein (30%) and low energy (10.5 kJ g?1 diet), while lipid content was 6.4±0.3% at diet containing 20% protein and 14.7 kJ g?1 diet. Large initial size fish fed the diet with 25% protein and 14.7 kJ g?1 had the highest body protein (32.0±0.4%) and lowest lipid content (2.2±0.3%). Feed conversion ratio (FCR) and protein efficiency ratio varied with different dietary protein‐energy levels and initial fish sizes. Feed conversion ratio increased with increasing protein and decreasing energy level in the diet, and values in small fish were higher than values in large fish. Protein efficiency ratio decreased with increasing dietary protein level and decreasing energy level. The maximum total production (7.6 tons feddan?1) was with dietary high protein (30%) and low energy (10.5 kJ g?1) for small‐sized fish, while large initial fish had the highest production (3.7 tons feddan?1) when fed the 25% protein and 12.6 kJ g?1 diet energy. Starting with 22.9 g fish was more advantageous than the initial size of 39.8 g for rearing Nile tilapia. Small fish required a high‐protein and low‐energy diet, whereas large fish required a low‐protein and high‐energy diet to achieve highest production.  相似文献   

5.
This study aimed to investigate the effects of dietary choline supplementation on growth, lipid deposition and intestinal enzyme activities of Megalobrama amblycephala. Fish were fed four diets with two lipid levels (50 and 150 g kg?1) and two choline supplementations (600 and 1600 mg kg?1) for 8 weeks. Feed conversion ratio (FCR), viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, whole‐body and muscle lipid contents, intestinal lipase activities and lipoprotein lipase (LPL) activities all increased significantly (< 0.05) as lipid levels increased, whereas the opposite was true for whole‐body and muscle moisture contents and intestinal amylase activities. VSI, IPF ratio and whole‐body lipid contents all decreased significantly (< 0.05) with increasing dietary choline supplementations. Weight gain, muscle moisture content all increased significantly (< 0.05) with increasing dietary choline supplementations when dietary lipid levels reached 150 g kg?1, whereas the opposite was true for FCR, IPF ratio, IPF and liver LPL activities. In addition, abnormal hepatocytes were found in the liver of fish fed 150 g kg?1 lipid with 600 mg kg?1 choline supplementation. The result of this study indicated that extra choline supplementation can improve growth performance, intestinal enzymes activities and reduce excessive lipid deposition of M. amblycephala fed high lipid.  相似文献   

6.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

7.
The wide use of lipid as a non‐protein energy substitute has led to lipid metabolic problems in cultured tilapia. Therefore, studies that reduce the effects of high‐fat diets in genetically improved farmed tilapia (GIFT) are required. This study evaluated the optimum level and effects of dietary α‐lipoic acid (α‐LA) on growth performance, body composition, antioxidant capacity and lipid metabolism of GIFT tilapia. The basal diet (120 g/kg lipid) was supplemented with six concentrations of α‐LA at 0 (control), L300, L600, L900, L1200 and L2400 mg/kg diet to make the experimental diets, which were fed to GIFT tilapia juveniles (initial body weight: 0.48 ± 0.01 g) for 8 weeks. The weight gain of fish improved significantly in the L300 than other dietary treatments. The intraperitoneal fat index and lipid content of fish fed on the L2400 diet decreased significantly than those fed on the control diet. The activities of superoxide dismutase and glutathione peroxidase (GSH‐Px) in serum and liver were significantly higher in fish fed on the L300 diet than the control. The reduced GSH content of fish fed on the L300 in serum and liver was significantly higher than those fed on control diet. The malondialdehyde content in serum and liver was significantly lower in L300 than in the control. The adipose triglyceride lipase gene was significantly up‐regulated in fish fed on the L2400, but the diacylglycerol acyltransferase 2 gene was down‐regulated in adipose. The liver‐type fatty acid‐binding protein gene in the liver was significantly up‐regulated in fish fed on the L300 and L600 diets. Moreover, the acyl‐coenzyme A oxidase gene in liver was significantly up‐regulated in fish fed on the L300, L600, L900 and L1200 diets. Polynomial regression analysis indicated that 439–528 mg/kg α‐LA is an appropriate dosage in high‐fat diet to improve growth performance and relieve lipid oxidative damage by accelerating lipid catabolism and reducing lipid synthesis in GIFT tilapia.  相似文献   

8.
A 10‐week feeding trial was conducted in a flow‐through system to determine dietary choline requirement for juvenile gibel carp (Carassius auratus gibelio) (5.5 ± 0.1 g). Purified basal diet was formulated using vitamin‐free casein as protein source. Choline chloride was supplemented to the basal diet to formulate seven diets containing 76.1, 163, 356, 969, 1457, 2024 and 4400 mg kg?1 choline. Dietary methionine was 0.58%, less than the requirement (0.69%). The results indicated that specific growth rate (SGR) was higher in the fish fed 2024 mg kg?1 diet than the control group. Feeding rate and feed efficiency were not significantly affected. Protein productive value increased as dietary choline increased from 76.1 to 2024 mg kg?1 diet and was lower in the fish fed the diet containing 4400 mg choline kg?1 diet. Serum high‐density lipoprotein cholesterol (HDL‐C) and total cholesterol significantly increased with increasing dietary choline up to 1457 mg kg?1, and no differences were found with further increase. Fish carcass fat contents decreased significantly with increased dietary choline. Hepatic lipid contents increased with dietary choline up to 1457 mg kg?1 and then decreased. Quadric regression of SGR and plasma HDL‐C indicted dietary choline requirement was 2500 and 2667 mg kg?1 diet, respectively.  相似文献   

9.
Fish tissues, particularly rich in n‐3 PUFA, are prone to lipid peroxidation that can damage cellular membranes, cause severe lesions and subsequently incidences of disease and mortality. However, fish possess antioxidant defences, such as vitamin E (VE) and antioxidant enzymes, to protect them against oxidative damage. This study investigated the effects of an increasing gradient of oxidized dietary lipid on the survival, growth performance, skeletogenesis and antioxidant defensive processes occurring in Senegalese sole (Solea senegalensis) larvae. Four groups of fish were fed live prey enriched with experimental emulsions containing an increasing gradient of oxidized oil: non‐oxidized, NO+VE, 34.5 nmol MDA g?1 w.w.; mildly oxidized, MO+VE, 43.1 nmol MDA g?1 w.w.; highly oxidized, HO+VE, 63.3 nmol MDA g?1 w.w. and highly oxidized without VE, HO‐VE, 78.8 nmol MDA g?1 w.w. The oxidation levels increased in enriched rotifers following the oxidation gradient of the emulsions, but were not affected in enriched Artemia metanauplii. The oxidation status of Senegalese sole larvae increased during development, but this was not related to the dietary treatments. The increasing dietary oxidation levels did not affect the fatty acid profile, survival, growth performance and metamorphosis processes of sole larvae. Senegalese sole seem to activate antioxidant defence mechanisms in response to the increasing amounts of dietary peroxidized lipids, in a manner efficiently enough to prevent detection of any alterations of these physiological processes. Antioxidant systems and detoxification mechanisms appeared to occur through the consumption of dietary α‐tocopherol, the activation of the antioxidant enzymes (catalase, superoxide dismutase, glutathione S‐transferase, glutathione reductase) and the retention of oxidized fat in the intestinal enterocytes for detoxification prior to their utilization. However, fish fed the highest oxidized diet presented a reduction in bone mineralization, but lower incidence of deformities in the vertebral and caudal regions than fish fed the other diets. This study exemplifies the importance of rearing Senegalese sole larvae on non‐oxidized diets during the early larval development to avoid detrimental consequences in older fish, most notably in the process of skeletogenesis.  相似文献   

10.
Ten isonitrogenous casein–gelatin‐based diets were formulated to contain five estimated metabolizable energy concentrations (10.92, 12.29, 13.63, 14.82 and 16.16 kJ g?1) at two carbohydrate‐to‐lipid ratios (CHO : L, 5.3 and 12.8, g : g) in a 5 × 2 factorial arrangement. Each diet was assigned to triplicate groups of 11 piracanjuba fingerlings (5.25 ± 0.14 g) and fed to apparent satiation twice a day for 90 days. Higher daily weight gain was obtained by fish fed the 13.63 kJ g?1 diets for both CHO : L ratios. There was a significant reduction of feed consumption when dietary energy concentration increased above 13.63 kJ g?1. Feed conversion ratio and apparent net energy retention improved as dietary energy increased. Apparent net protein retention tended to be lower in the highest and lowest dietary energy concentrations. The results suggest that dietary lipid energy was more efficiently utilized by piracanjuba fingerlings than carbohydrate energy. Body composition and hepatosomatic index (HSI) were not influenced by dietary CHO : L ratio. However, an increase in dietary energy concentration beyond 13.63 kJ g?1 resulted in a significant increment in lipid deposition, while body moisture and HSI decreased. Our findings indicate that at 300 g kg?1 dietary crude protein, a CHO : L ratio of 5.3 is recommended for piracanjuba, and the required energy is either 13.63 kJ g?1 if raised for aquaculture or 14.82 kJ g?1 if destined to stock enhancement.  相似文献   

11.
This study tested the effect of two diets differing in carbohydrate to lipid (CHO:LIP) ratio (4.7 vs. 19.5 g/g) on the contribution of natural food and the total fish production in tilapia ponds. Eight ponds, each divided into three equally sized compartments, were assigned to one of the two diets, which differed in CHO:LIP ratio but had the same digestible protein to digestible energy (DP:DE) ratio (15.5 and 15.6 g/MJ). Ponds were fed equal amounts of crude protein. Three feeding levels (no, low and high) were nested in each pond in a split plot design. Average body weight of fish at stocking was 90 g, and the duration of the experiment was 42 days. Increasing the CHO:LIP ratio had no impact on tilapia production. However, the feeding level influenced both biomass gain, specific growth rate and survival. The apparent digestibility coefficient (ADC) for fat and carbohydrate was influenced by dietary CHO:LIP ratio but ADC for energy was unaffected. Proximate analysis of fish body composition showed no effect of diet except for levels of ash. Diet had no effect on the organic matter composition of the faeces, and the contribution of natural food to fish nitrogen gain. Therefore, we postulate that changing the dietary non‐protein energy source from lipid to carbohydrate does not have any impact on tilapia culture in semi‐intensive ponds.  相似文献   

12.
To explore the mechanism of fatty liver formation induced by high non‐protein energy diets in grass carp (Ctenopharyngodon idella), basal diet and high‐energy diets were fed to juvenile grass carp for 9 weeks. The experimental groups fed on high‐energy diets which included a high‐lipid diet (H‐LIP), a high‐carbohydrate diet (H‐CHO) and a high‐lipid and carbohydrate diet (H‐CL). The control group fed on basal diet. Growth performance, liver fat accumulation, serum biochemical indexes and the expression levels of lipid metabolism‐related genes (SREBP‐1, PPARγ, FAS, ACC1, and LPL) and miRNAs (miR‐33, miR‐122, and miR‐370) were examined at the end of the feeding trial. There were no significant differences in growth rate and feed efficiency among the four groups. However, significant increase in mesenteric and liver fat contents, and lipid droplets in the liver was induced by high‐lipid and high‐carbohydrate diets. There were significant differences in serum biochemical indicators such as AST/ALT, GLB, TG and TP, and liver fatty acid composition between the control and experimental groups. The expression levels of SREBP‐1, PPARγ, FAS, ACC1 and LPL were upregulated, while CPT‐1 was downregulated with the high‐energy treatments. Additionally, the expression levels of miR‐33, miR‐122 and miR‐370 in the liver were higher in the three high‐energy treatments than those in the control (P < 0.05). The results suggest that modifications of lipid metabolism‐related genes and miRNAs may be involved in fatty liver formation induced by high non‐protein energy diets in grass carp.  相似文献   

13.
A feeding trial was conducted in a recycling water system during 10 weeks to determine the optimal protein to lipid ratio in Asian red‐tailed catfish (Hemibagrus wyckioides). Six diets of two protein levels (390 and 440 g kg?1) with three lipid levels (60, 90 and 120 g kg?1) were formulated. Fish (1.96 g) were fed six diets with four replicates to apparent satiation at a stocking density of 50 fish per tank (500 L). Faeces were collected in cultured tanks at the end of the feeding trial for digestibility measurement. Significantly, improved growth performances (P < 0.01) and higher feed utilization (P < 0.001) were observed in fish fed with higher lipid diets. However, higher protein diets did not significantly improve fish growth but they reduced FCR (P < 0.001) and protein efficiency ratio (P < 0.01). Higher lipid diets also resulted in significantly increased adipose‐somatic index, carcass fat and reduced moisture of the fish. The study revealed the protein sparing effect of dietary lipid in the catfish and highest growth performance was found by fish fed 390 g kg?1 protein and 120 g kg?1 lipid diet with P/E ratio of 20.48 mg protein kJ?1. DP/DE ratio for maximal growth rate in diets was 21.48 mg protein kJ?1.  相似文献   

14.
This study aimed to evaluate the fat deposition pattern and lipid metabolic strategies of grass carp in response to dietary lipid levels. Five isonitrogenous diets (260 g kg?1 crude protein) containing five dietary lipid levels (0, 20, 40, 60, 80 g kg?1) were fed to quadruplicate groups of 15 fish with initial weight 200 g, for 8 weeks. The best growth performance and feed utilization was observed in fish fed with lipid level at 40 g kg?1. MFI and adipose tissue lipid content increased with increasing dietary lipid level up to 40 g kg?1, and higher lipid level in diet made no sense. Fish adapted to high lipid intake through integrated regulating mechanisms in several related tissues to maintain lipid homeostasis. In the present study, grass carp firstly increased PPARγ and CPT1 expressions in adipose tissue to elevate adipocyte differentiation and lipolysis to adapt to high lipid intake above 40 g kg?1. In liver, fish elevated hepatic lipid uptake but depressed biosynthesis of hepatic FAs, resulted in no difference in HSI and liver lipid content among the groups. Only in muscle, fish showed a significant fat deposition when the lipid intake above 40 g kg?1. The excess lipid, derived from enhanced serum TC and TG contents, was more likely to induce deposition in muscle rather than lipid uptake by adipose tissue in grass carp fed with high dietary lipid, indicating the muscle of grass carp might be the main responding organ to high lipid intake.  相似文献   

15.
Copepod oil (CO) from the marine zooplankton, Calanus finmarchicus, is a potential alternative to fish oils (FOs) for inclusion in aquafeeds. The oil is composed mainly of wax esters (WE) containing high levels of saturated fatty acids (SFAs) and monounsaturated fatty alcohols that are poorly digested by fish at low temperatures. Consequently, tissue lipid compositions may be adversely affected in salmon‐fed CO at low temperatures. This study examined the lipid and FA compositions of muscle and liver of Atlantic salmon reared at two temperatures (3 and 12 °C) and fed diets containing either FO or CO, supplying 50% of dietary lipid as WE, at two fat levels (~330 g kg?1, high; ~180 g kg?1, low). Fish were acclimatized to rearing temperature for 1 month and then fed one of four diets: high‐fat fish oil (HFFO), high‐fat Calanus oil (HFCO), low‐fat fish oil (LFFO) and low‐fat Calanus oil (LFCO). The fish were grown to produce an approximate doubling of initial weight at harvest (220 days at 3 °C and 67 days at 12 °C), and lipid content, lipid class composition and FA composition of liver and muscle were determined. The differences in tissue lipid composition between dietary groups were relatively small. The majority of FA in triacylglycerols (TAG) in both tissues were monounsaturated, and their levels were generally higher at 3 °C than 12 °C. Polyunsaturated fatty acids (PUFA), particularly (n‐3) PUFA, predominated in the polar lipids, and their level was not significantly affected by temperature. The PUFA content of TAG was highest (~26%) in the muscle of fish fed the HFCO diet at both temperatures. Tissue levels of SFAs were lower in fish‐fed diets containing HFCO than those fed HFFO, LFFO or LFCO, particularly at 3 °C. The results are consistent with Atlantic salmon being able to incorporate both the FA and fatty alcohol components of WE into tissue lipids but, overall, the effects of environmental temperature on tissue lipids were more pronounced in fish fed the CO diets than FO diets.  相似文献   

16.
The growth performance, fatty acid composition, hepatic lipid content, hepatic somatic index and lipid peroxidation in Russian sturgeon were investigated using diets containing three lipid levels 50 g kg?1 (L5), 150 g kg?1 (L15) and 250 g kg?1 (L25) and three n‐3/n‐6 fatty acid ratios (1 : 3, 1 : 1 and 3 : 1) for 8 weeks. Weight gain significantly increased with the increase in dietary lipid levels at n‐3/n‐6 fatty acid ratios of 1 : 3 and 1 : 1, but not at the 3 : 1 ratio. Correspondingly, fish survival gradually decreased with the increase in dietary lipid at the 3 : 1 n‐3/n‐6 fatty acid ratio. The dietary lipid level significantly affected the composition of whole‐body fatty acid. The retention of highly unsaturated fatty acid dramatically decreased at the level of 250 g kg?1 dietary lipid. The liver malondialdehyde increased with the increase in dietary lipid levels and the n‐3/n‐6 fatty acid ratios. The contents of lipid and triglyceride in the liver and the hepatic somatic index also increased with the increase in dietary lipid. The diet combination of L25 + 3 : 1 showed the highest aspartate transaminase and alanine transaminase, indicatives of hepatic injury. This study indicates that the L25 + 1 : 3 diet can improve fish growth performance, whereas the L25 + 3 : 1 diet may lead to poor growth performance due to high lipid peroxidation.  相似文献   

17.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

18.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

19.
Present study aimed to determine the optimum dietary lipid level in snakehead murrel channa striatus broodstocks. Triplicate groups of fish were fed for 240 days with isonitrogenous experimental diets with increasing lipid levels (100, 140, and 180 g kg?1), using fish oil and soybean oil as the lipid sources with the ratio of (1:1). Weight gain, GSI, fecundity, oocyte diameter and number of mature oocyte were found to be significantly higher in the group fed with diet containing 180 g kg?1 lipid level. Muscle fatty acid profile showed a significant increase in LA (18:2n‐6), LNA (18:3n3), total PUFA, n‐6 and ArA (20:4n‐6) in fish fed with diet containing 180 g kg?1 lipid. Increasing lipid level up to 180 g kg?1 resulted in significant increase in PUFA (LA & LNA), lc‐PUFA (EPA, DHA, ArA), total PUFA, n‐3 and n‐6 series in ovary and liver of female C. striatus.  相似文献   

20.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号