首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
目的]印度黄檀叶含有多酚及类黄酮物质,研究印度黄檀叶多酚及其抗氧化活性,可为其利用提供依据。[方法]以印度黄檀叶为原料,乙醇为提取液,经单因素实验与正交试验设计,检测在不同乙醇浓度、提取时间、提取温度及超声功率120 w时3个因素进行响应面优化试验,确定印度黄檀多酚的提取工艺;同时,鉴定印度黄檀叶乙醇-水提取液对DPPH-自由基的清除能力。[结果]低浓度印度黄檀叶多酚能发挥更强的抗氧化能力,其提取液对清除DPPH自由基的半数抑制质量浓度(IC_(50))约为3.2 mg·L~(-1),略大于Vc的2.5 mg·L~(-1);不过,其还原能力略低于Vc。[结论]印度黄檀叶内富含多酚类物质,具有很强的体外抗氧化活性,可作为天然抗氧化植物资源开发利用。  相似文献   

2.
A study was conducted in the semi-arid regions of Haryana, in Northern India, to see the effect of Azadirachta indica, Prosopis cineraria, Dalbergia sissoo and Acacia nilotica on the yield of irrigated wheat crop. Data on crop yield for each tree species at different distances (1, 3, 5 and 7 m) and four directions (east, west, north and south) from the tree bases and control (no trees) were collected. Results indicate that A. indica and P. cineraria did not show any significant difference in the wheat yield while the other two species (D. sissoo and A. nilotica) showed a reduction in wheat yield. A. nilotica had the most significant and prominent effect, and a reduction of nearly 40 to 60% wheat yield was observed. The effect of this tree species was observed even beyond the spread of the crown. D. sissoo reduced yield by 4 to 30% but the reduction was only up to a distance of 3 m. In general, the impact of trees on wheat yield was observed up to 3 m distance and there is little, if any, impact up to 5 m distance and almost no impact at 7 m distance. In all the tree species, the wheat yield was reduced to a maximum on the north side of the trees and had almost no effect in the southern direction. Crop maturity was observed to be delayed by three weeks under A. nilotica, by 9–10 days under D. sissoo, and only by 6–7 days under P. cineraria and A. indica.  相似文献   

3.
The impact of contour hedgerow systems on soil sustainability under acidic conditions has been widely criticized. A study was undertaken to determine the effects of management and hedgerow species on soil properties. Cassia spectabilis (a non-N-fixing tree legume), Gliricidia sepium (an N-fixing tree legume), Pennisetum purpureum (a forage grass), and Stylosanthes guyanensis (a forage legume) contour barriers were compared with an open field (non-hedgerow treatment) over 1 cowpea and 2 rice seasons. Three types of management viz.: prunings applied + N0P0K0, prunings applied + N50P20K20 and prunings removed + N50P20K20 were used as subplot treatments. The soils were strongly acidic (pH 4.5) and classified as clay Orthoxic Palehumult. Cassia performed better than the other species in terms of pruning biomass, N and P contributions over a period of 20 months. There was a combined positive effect of pruning biomass and fertilizers on rice and cowpea yields in Pennisetum and Gliricidia systems, while a tendency towards a positive effect of pruning biomass on rice was found in the Cassia system. The pruning biomass and/or fertilizer application did not significantly influence the top soil organic C, N and available P in the hedgerow systems. Soil bulk density was significantly reduced by the application of Cassia prunings after 12 months. Organic C, N and P dynamics indicated that in situ pruning biomass was not sufficient to maintain their level in the soil. But the cassia systems with prunings applied + N50P20K20 experienced the lowest degradation in soil organic C (2.1 t ha−1) followed by the Gliricidia systems (4.1 t ha−1). The overall results imply that the application of pruning and inorganic fertilizer is imperative to conserve soil resources, and non- N-fixing tree species can exert a significant advantage in biomass and thereby in soil N-recycling under acidic soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Aiming to support the use of native species from the Atlantic Rainforest in local agroforestry systems, we analysed chemical and biochemical components related to leaf decomposition of Inga subnuda, Senna macranthera, Erythrina verna, Luehea grandiflora, Zeyheria tuberculosa, Aegiphila sellowiana, and Persea americana. These tree species are native (except for P. americana) and commonly used in agroforestry systems in the Atlantic Rainforest. For the three first species (Fabaceae), we also analysed the remaining dry matter and released nutrients from leaves, using litter bags, and biological nitrogen fixation, using Bidens pilosa and Brachiaria plantaginea as references of non-N2-fixing plants. Leaves from I. subnuda, L. grandiflora, and P. americana had a lower decomposition rate than the other species, exhibiting negative correlations with lignin/N and (lignin+polyphenol)/N ratios. The percentages of remaining dry matter after 1 year were 69 % (I. subnuda), 26 % (S. macranthera) and 16 % (E. verna). Higher nutrient release was found in decreasing order from residues of E. verna, S. macranthera, and I. subnuda. The percentages of nitrogen fixation were 22.6 % (E. verna), 20.6 % (I. subnuda) and 16.6 % (S. macranthera). Diversification of tree species in agroforestry systems allows for input of diversified organic material and can contribute to maintaining and improving soil functions resulting in improvements of soil quality.  相似文献   

5.
Conventional reforestation in the tropics often results in stands with low tree species and functional diversities. A different approach to reforestation, the so-called rainforestation, has been developed in the Philippines. It emphasizes mixed stands and the preferential use of native species supplemented by fruit trees. In such stands, we studied several functional leaf traits (stomatal conductance for water vapour, leaf morphology and chemistry) with the objectives (1) of assessing the species-specific variation of leaf traits and in particular that of maximal leaf stomatal conductance (gsmax), (2) of determining relationships between gsmax and other tree variables, and (3) of assessing whether leaf traits group the species studied. Sixteen broad-leaved species were studied, using five individual trees per species and ten fully expanded sunlit leaves per individual tree. Species-specific gsmax differed fivefold (165–772 mmol m−2 s−1). Among studied leaf traits, only the carbon isotope ratio δ13C exhibited a simple linear correlation with gsmax. A separate analysis for dipterocarp species indicated a strong negative relationship between gsmax and specific leaf area (SLA) (r2 = 0.96, P < 0.001, n = 5). For all 16 species, a multiple linear regression with the combinations leaf size/tree height and leaf size/canopy projection area also resulted in significant relationships, which partly explained the variability in gsmax. A multivariate approach (principal component analysis) combining the leaf traits provided an explanation of 75% of the variability along the first two axes. All native dipterocarps species, a native Guttiferae and the durian tree (Durio zibethinus) were associated with more depleted δ13C, small leaves and a low leaf width to length ratio. Two exotic species frequently used for reforestation (Gmelina arborea and Swietenia macrophylla) and the native early successional Terminalia microcarpa were differentiated by their high SLA and high leaf nitrogen content per leaf area (Narea). Both species of Artocarpus (A. blancoi and A. odoratissima) were also differentiated and had large leaves with low SLA and low Narea. These associations of species with leaf traits as variables indicate that species have different leaf investment strategies, which may imply that there are differences in whole plant performance. We conclude that rainforestation creates substantial variation in leaf traits, which is based on the combination of species with different leaf trait groupings. This can be seen as an important step towards – partly – restoring the functional diversity which characterizes many natural tropical rainforests.  相似文献   

6.
Structural and physiological characteristics and foliar nutrient content of 14 tree species were evaluated at two sites, one being seasonally wet with relatively fertile soils and the other being seasonally dry with relatively infertile soils. Differences in environmental stress between these sites drove the resulting differences in structural and physiological characteristics and leaf nutrient content of the investigated tree species. At the wet site, trees were more productive as site conditions allowed for greater photosynthetic activity to occur. The growth of pioneer tree species such as Spondias mombin, Guazuma ulmifolia, and Luehea seemanni, correlated strongly with high water-use efficiency and large, low-density leaves. Tree species, especially N-fixing species such as Albizia adinocephala, Albizia guachapele, Enterolobium cyclocarpum, and Gliricidia sepium, adapted to the greater levels of environmental stress at the dry site with infertile soils by increasing their water-use efficiency. Species differences were also significant, indicating that certain species adapted physiologically and structurally to environmental stress. Tree productivity operated under different structural and physiological constraints at each site. Leaf mass area (LMA), foliar N, and leaf area index (LAI) best predicted mass-based net photosynthetic capacity at the more fertile, wet site while foliar N was the best predictor of mass-based net photosynthetic capacity at the less fertile, dry site. Results from this study suggest the use of pioneer species at wet, fertile sites and N-fixing species at dry, infertile sites for restoration projects.  相似文献   

7.
Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes death of this potential tree-species within a few months. Vegetative propagation could avoid the die-back disease. Thirty mother trees of different age-groups of D. sissoo were selected for evaluating the rooting behaviour of branch cuttings from D. sissoo as influenced by auxins (IAA or IBA at 100, 200, 500 mg·L−1), ages of mother trees (10, 4 and 2 years old) and different environment conditions, i.e., different mediums (soil and sand) or light conditions (in shade and open condition). The results show that application of IAA and IBA induced more numbers of cuttings (collected from 10-year-old mother trees) to root compared to control. Branch cuttings of D. sissoo collected from 10-year-old mother trees and planted in soil bed in open conditions had 100.0% of cuttings to root in IAA (100 mg·L−1) and IBA (200 mg·L−1) treatments. Both rooting medium (Soil and sand) influenced significantly (p<0.05) on rooting response of branch cuttings. Soil medium was found to achieve maximum no. of branch cuttings to root, compared to sand medium.  相似文献   

8.
To rehabilitate a degraded Alfisol at Ibadan, southwestern Nigeria, Senna siamea (non-N-fixing legume tree), Leucaena leucocephala, and Acacia leptocarpa (N-fixing legume trees) were planted in 1989, and Acacia auriculiformis (N-fixing legume tree) in 1990. Pueraria phaseoloides (a cover crop) and natural fallow were included as treatments. Litterfall and climatic variables were measured in 1992/1993 and 1996/1997 while biomass production and nutrient concentrations were measured in 1993 and 1995. Total litter production from the natural and planted fallows was similar, with means ranging from 10.0 (L. leucocephala) to 13.6 t ha−1 y−1 (natural fallow) during the 1996/1997 collection. Leaves constituted 73% (L. leucocephala) to 96% (A. auriculiformis) of total litterfall. Acacia auriculiformis grew most quickly but S. siamea produced the highest aboveground biomass which was 127 t ha−1 accumulated over four years, and 156 t ha−1 accumulated over six years of establishment. The aboveground biomass of P. phaseoloides and natural fallow was only 6 to 9 t ha−1 at six years after planting. Nitrogen concentration in the leaves/twigs of was 2.5% for L. leucocephala, and 2% for other planted species and natural fallow. Pueraria phaseoloides had concentrations of P, K, Ca and Mg comparable to levels in the leaves/twigs of the tree species. Through PATH analysis, it was found that maximum temperature and minimum relative humidity had pronounced direct and indirect effects on litterfall. The effects of these climatic variables in triggering litterfall were enhanced by other variables, such as evaporation, wind, radiation, and minimum temperature. Improvement in chemical properties by fallows was observed in the degraded soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
[目的]随着全球O_3浓度升高,O_3胁迫对植物影响的研究已成为研究的热点之一。我国的相关研究较少,主要以农作物为主,且大多局限在北方地区。本研究探讨O_3胁迫下,亚热带三种楠木幼苗光合作用的变化规律及其可见伤害症状,以期为后续研究提供理论依据。[方法]以一年生亚热带乡土树种桢楠、闽楠和刨花楠幼苗为材料,采用开顶式气室(OTCs),研究低浓度O_3、环境大气、100 n L·L-1O_3、150 n L·L-1O_3处理对光合作用的影响及伤害症状。[结果]研究表明:(1)O_3胁迫下,三种楠木幼苗的光合作用受到一定的抑制,气孔导度和净光合速率的相关性降低,对光合有效辐射的利用范围整体减小,出现了明显的光抑制现象。O_3浓度越高,对桢楠和刨花楠光合作用的抑制效果越明显,而100 n L·L-1O_3处理对闽楠光合作用的抑制效果较150 n L·L-1O_3处理明显。环境大气中的O_3浓度均值较低,但由于其较高的O_3浓度峰值,仍对三种楠木幼苗的光合作用产生了一定的抑制。与环境大气相比,低浓度O_3处理通过消除较高的O_3浓度峰值从而缓解了O_3对光合作用的不利影响。(2)O_3胁迫下,桢楠叶片出现褪绿、黄斑和坏死斑的症状,闽楠叶片出现褪绿、黄斑和水渍的症状,刨花楠叶片出现红褐色斑、水渍、坏死斑、卷曲皱缩、失水萎蔫的症状。三种楠木幼苗叶片的伤害症状随O_3浓度的增加而更明显。[结论]三种楠木幼苗叶片的光合作用均受到O_3的抑制,并出现了伤害症状,可作为O_3污染的指示树种。光合作用对O_3敏感性的关系为:刨花楠闽楠桢楠,其中刨花楠对O_3更敏感,伤害症状也较多样,因此指示O_3污染的效果更好。  相似文献   

10.
The calculation of critical loads and their exceedance is one method to describe the vulnerability of forests to environmental stress caused by anthropogenic impact. Exceedance of critical loads for acidifying inputs and nitrogen was compared to different indicators of the soil and forest conditions in the German part of the extensive forest monitoring (ICP Forests/EU Level I), including more than 1,800 plots. In addition, an empirical relationship between the C/N ratio of the forest floor humus layer (C/N Humus) and the estimated nitrogen output for ten plots of the intensive monitoring (ICP Forests/EU Level II) was established in order to estimate the potential nitrogen output on Level I plots dominated by Norway spruce. Regarding all tree species assessed, the exceedance of critical loads for nitrogen and sulphur is negatively correlated with pH and base saturation up to 30 cm soil depth. The sulphur deposition and the exceedance of critical loads are highly correlated with the sulphur content of leaves and needles, whereas the respective relations for nitrogen were lower. The crown condition was weakly positively related to the sulphur content in tree leaves and needles. For Norway spruce sites, high exceedance of critical loads for nitrogen and nitrogen deposition corresponded well with low C/N Humus. In regions with high nitrogen load and low C/N ratios in the humus layer, the calculated nitrogen output was high. The results support the concept of critical thresholds in that way that their exceedance can impair forest ecosystem functions like nitrogen retention.  相似文献   

11.
Litterfall and decomposition were studied in agroforestry systems involving large cardamom (Amomum subulatum) and mandarin (Citrus reticulata) in the Sikkim Himalaya, India. There were stands with N2-fixing trees (Alnus nepalensis over large cardamom, and Albizia stipulata over mandarin agroforestry) or without them (native non-symbiotic mixed tree species) in both systems. The total annual litter (litter + crop residue) production was higher in the Alnus-cardamom than in the forest-cardamom stand and in the mandarin than in the Albizia-mandarin stand. The ratio of litter production to floor litter was higher in the N2-fixing stands than in the non-N2-fixing stands, indicating a faster litter turnover in the former. Tree litterfall occurred throughout the year, but with marked peaks during November to April. Total soluble polyphenolics of fresh litter were higher in N2-fixing species than in mixed tree species and crops. Half-life values for ash-free mass were shortest in the leaves of N2-fixing species. N loss was higher from N2-fixing Alnus and Albizia leaves, whereas P loss was faster and nearly equal in Alnus leaf litter and cardamom residue in cardamom, and Albizia leaf litter and crop residue in mandarin agroforestry systems. The P turnover in N2-fixing Alnus and Albizia twigs was faster than in the twigs of mixed tree species. The N2-fixing tree species increased the N and P cycling through production of more above-ground litter and influenced greater release of these nutrients.  相似文献   

12.
On the Loess Plateau, China, several planted tree species such as Populus hopeinsis and Robinia pseudoacacia suffer occasional diebacks in the top shoots, reducing growth rates after maturation. However, this does not usually occur in other species, e.g., Ulmus pumila and Zizyphus jujuba. We compared stable carbon isotope ratios (δ13C) as indicators of leaf water-use efficiency (WUE), leaf mass per unit area (LMA), and leaf area- and mass-based nitrogen content (Narea and Nmass) by tree height (1, 5, and 10 m) in P. hopeinsis, R. pseudoacacia, U. pumila, and Z. jujuba. In P. hopeinsis and R. pseudoacacia, leaf δ13C and Narea were significantly lower in 10-m trees than in 1-m saplings, indicating that leaf WUE and photosynthetic rates of both species decreased with tree height. In contrast, δ13C in Z. jujuba varied little with tree height. The δ13C of 10-m-tall U. pumila trees was significantly higher than that of 1-m plants, demonstrating an increase in WUE with tree height. Decreasing WUE, leaf Narea, and Nmass with height increases in P. hopeinsis and R. pseudoacacia may be related to water and nutrient limitations for these species in semiarid regions. In contrast, stable or increasing δ13C with tree height in U. pumila and Z. jujuba may account (to some extent) for successful production of these species under identical environmental conditions. Diameter growth rate also decreased with maturity in P. hopeinsis and R. pseudoacacia, but increased or was stable for U. pumila and Z. jujuba. The differences in leaf WUE and LMA among species with tree maturity may be related to species’ growth patterns and susceptibility to drought stress, and are likely to be important new criteria for plantation species selection on the Loess Plateau.  相似文献   

13.
Field experiments were conducted during rainy seasons of three consecutive years (2008–2010) to study the effect of green leaf manuring on dry matter partitioning and productivity of lowland rice (Oryza sativa L.). Green leaves of five indigenous agroforestry tree species viz., Erythrina indica, Acacia auriculiformis, Alnus nepalensis, Parkia roxburghii, and Cassia siamea were treated at 10 t ha?1 on fresh weight basis in rice fields and compared with recommended N–P2O5–K2O (80:60:40 kg ha?1) and control treatments. During 2008–2009 year, yield attributes and rice yield were greater in NPK plots as compared to the green-leaf manured ones. However, in the third year, green leaf manuring (except that of Alnus) surpassed even the recommended N–P2O5–K2O treatment in terms of dry matter production and yield; better response was however observed with Erythrina. The soil available N after final harvest increased by ca. 14–20 % in Alnus and Erythrina treated plots as compared to the control. Over all, it could be said that management of plant residues can have long-term implications apart from the desired maintenance of soil organic matter and improving crop yield.  相似文献   

14.
Greater understanding of the influences on long-term coffee productivity are needed to develop systems that are profitable, while maximizing ecosystem services and lowering negative environmental impacts. We examine a long-term experiment (15 years) established in Costa Rica in 2000 and compare intensive conventional (IC) coffee production under full sun with 19 agroforestry systems combining timber and service tree species with contrasting characteristics, with conventional and organic managements of different intensities. We assessed productivity through coffee yield and coffee morphological characteristics. IC had the highest productivity but had the highest yield bienniality; in the agroforestry systems productivity was similar for moderate conventional (MC) and intensive organic (IO) treatments (yield 5.3 vs. 5.0 t ha?1 year?1). Significantly lower yields were observed under shade than full sun, but coffee morphology was similar. Low input organic production (LO) declined to zero under the shade of the non-legume timber tree Terminalia amazonia but when legume tree species were chosen (Erythrina poepiggiana, Chloroleucon eurycyclum) LO coffee yield was not significantly different than for IO. For the first 6 years, coffee yield was higher under the shade of timber trees (Chloroleucon and Terminalia), while in the subsequent 7 years, Erythrina systems were more productive; presumably this is due to lower shade covers. If IC full sun plantations are not affordable or desired in the future, organic production is an interesting alternative with similar productivity to MC management and in LO systems incorporation of legume tree species is shown to be essential.  相似文献   

15.
The effects of understory plant litter on dominant tree litter decomposition are not well documented especially in semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two understory species (Artemisia scoparia and Setaria viridis) litter on the mass loss and N release of Mongolian pine (Pinus sylvestris var. mongolica) litter in Keerqin Sandy Lands, northeast China, and identified the influencing mechanism from the chemical quality of decomposing litter. Four litter combinations were set up: one monoculture of Mongolian pine and three mixtures of Mongolian pine and one or two understory species in equal mass proportions of each species. Total C, total N, lignin, cellulose and polyphenol concentrations, and mass loss of pine litter were analyzed at days 84 and 182 of incubation. The chemistry of pine litter not only changed with the stages of decomposition, but was also strongly influenced by the presence of understory species during decomposition. Both understory species promoted mass loss of pine litter at 84 days, while only the simultaneous presence of two understory species promoted mass loss of pine litter at 182 days. Mass loss of pine litter was negatively correlated with initial ratios of C/N, lignin/N and polyphenol/N of litter combinations during the entire incubation period; at 182 days it was negatively correlated with polyphenol concentration and ratios of C/N and polyphenol/N of litter combinations at 84 days of incubation. Nitrogen release of pine litter was promoted in the presence of understory species. Nitrogen release at 84 days was negatively correlated with initial N concentration; at 182 days it was negatively correlated with initial polyphenol concentration of litter combinations and positively correlated with lignin concentration of litter combinations at 84 days of incubation. Our results suggest that the presence of understory species causes substantial changes in chemical components of pine litter that can exert strong influences on subsequent decomposition of pine litter.  相似文献   

16.
The declines in soil fertility and productivity in continuously cropped poplar plantations are related to phenolic acid accumulation in the soil. Nitrogen is a vital life element for poplar and whether the accumulation of phenolic acid could influence nitrogen metabolism in poplar and thereby hinder continuous cropping is not clear. In this study, poplar cuttings of Populus × euramericana ‘Neva’ were potted in vermiculite, and phenolic acids at three concentrations (0X, 0.5X and 1.0X) were added according to the actual content (1.0X) in the soil of a second-generation poplar plantation. Each treatment had eight replicates. We measured gas exchange parameters and the activities of key enzymes related to nitrogen metabolism in the leaves. Leaf photosynthetic parameters varied with the concentration of phenolic acids. The net photosynthetic rate (PN) significantly decreased with increasing phenolic acid concentration, and non-stomatal factors might have been the primary limitation for PN. The activities of nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT), as well as the contents of nitrate nitrogen, ammonium nitrogen, and total nitrogen in the leaves decreased with increasing phenolic acid concentration. This was significantly and positively related to PN (P < 0.05). The low concentration of phenolic acids mainly affected the transformation process of NO3? to NO2?, while the high concentration of phenolic acids affected both processes, where NO3? was transferred to NO2? and NH4+ was transferred to glutamine (Gln). Overall, phenolic acid had significant inhibitory effects on the photosynthetic productivity of Populus × euramericana ‘Neva’. This was probably due to its influence on the activities of nitrogen assimilation enzymes, which reduced the amount of amino acids that were translated into protein and enzymes. Improving the absorption and utilization of nitrogen by plants could help to overcome the problems caused by continuous cropping.  相似文献   

17.
  • ? The resorption of nutrients (mainly N and P) from senescing leaves may be a key component of adaptive mechanisms that conserve scarce nutrients. Resorption may be expressed in two ways as resorption efficiency (RE) which is the ratio of the resorbed amounts of nutrient losses during leaf senescence in relation to its prior amount deposited in leaves and resorption proficiency (RP) is the level to which nutrient concentration per unit leaf mass is reduced in senescent leaves.
  • ? There is still much debate whether or not different life-forms (i.e. deciduous and evergreen species) show different foliar resorption patterns. Two sympatric species, namely Quercus petraea (Mattuschka) Liebl. subsp. iberica (Steven ex Bieb.) Krassiln. (deciduous) and Arbutus andrachne L. (evergreen) along an elevational gradient were compared with each other to determine whether or not nitrogen and phosphorus resorption efficiency and proficiency varies along the elevational gradient and which leaf parameters were as related to RE and RP.
  • ? NRE was found to be rather low in Q. petraea subsp. iberica compared to other deciduous species. Similarly, PRE in A. andrachne was rather low compared to other evergreen species. Mean residence time (MRT) measures how long a unit of nitrogen (MRTN) and phosphorus (MRTP) is present in the plant. MRTN and MRTP were found to be considerably higher in A. andrachne compared to Q. petraea subsp. iberica. In both species, the foliar N/P ratio was below 14 along the elevational gradient and, according to this threshold value, N-limitation occurred in the study area. Although both species in the present study show incomplete resorption deciduous species was more proficient as compared to evergreen one due to low N and P concentrations in senescent leaves. Based on the significant correlations (p < 0.05 and 0.01) between MRT and foliar resorption, it can be concluded that MRT could interfere with the mechanisms controlling nutrient resorption.
  •   相似文献   

    18.
  • ? Understanding the effects of tree species diversity on biomass and production of forests is fundamental for carbon sequestration strategies, particularly in the perspective of the current climate change. However, the diversity-productivity relationship in old-growth forests is not well understood.
  • ? We quantified biomass and above-ground production in nine forest stands with increasing tree species diversity from monocultures of beech to stands consisting of up to five deciduous tree species (Fagus sylvatica, Fraxinus excelsior, Tilia spp., Carpinus betulus, Acer spp.) to examine (a) if mixed stands are more productive than monospecific stands, (b) how tree species differ in the productivity of stem wood, leaves and fruits, and (c) if beech productivity increases with tree diversity due to lower intraspecific competition and complementary resource use.
  • ? Total above-ground biomass and wood production decreased with increasing tree species diversity. In Fagus and Fraxinus, the basal area-related wood productivity exceeded those of the co-occurring tree species, while Tilia had the highest leaf productivity. Fagus trees showed no elevated production per basal area in the mixed stands.
  • ? We found no evidence of complementary resource use associated with biomass production. We conclude that above-ground productivity of old-growth temperate deciduous forests depend more on tree species-specific traits than on tree diversity itself.
  •   相似文献   

    19.
    Leaf nitrogen content (Nmass, %) and leaf mass per area (LMA, g m−2) are two important features that are closely linked to the photosynthetic performance of plants and, thus, the NPP of forest ecosystems. Forest management practices, such as burning and thinning, change stand structure and soil dynamics, which may result in changes in Nmass and LMA. The objective of this study was to understand how Nmass and LMA of seven canopy tree species/genus (Quercus alba, Q. coccinea, Q. prinus, Q. velutina, Carya spp., Acer rubrum, and Liriodendron tulipifera) responded to (i) thinning and/or burning treatments and to (ii) different landscape and soil properties in southern Ohio. We collected leaves from the top, and bottom, of five individuals of each taxa in each treatment unit. Leave traits (Nmass and LMA) were compared using analysis of variance followed by orthogonal contrasts. To further understand the factors that influence the canopy leaf traits, we used regression tree analysis (RTA) to examine how variations of LMA and Nmass were linked to thinning and/or burning treatments, soil, and landscape variables. Finally, we assessed the potential ramifications of changes in these traits on canopy carbon budgets using a PnET-Day model, which is a daily time-step canopy carbon exchange model. We found significant effects of thinning, burning, and their interactions on LMA at the bottom of the crown while none of the treatments showed significant effects on LMA at the top of the crown. Nmass responded significantly to only burning treatment. RTA results exhibited minor effects of landscape features and soil properties on Nmass and LMA. Interspecific differences accounted for most variations of both leaf traits. Sensitivity analysis of PnET-Day model suggested these subcanopy changes in LMA increased the annual net primary production (NPP) by 8%. In summary, our results suggest that forest management can substantially influence canopy leaf traits such as Nmass and LMA and that alteration of these traits can influence forest NPP. Given the role of forests as global carbon sinks, the potential influence of thinning and burning on canopy traits, and thus NPP, is an important consideration for forest management.  相似文献   

    20.
    Andean-Patagonian forests are especially interesting for the study of N and P limitation because they receive minimal atmospheric pollution, have little influence of vascular N-fixing species, and grow on volcanic soils that retain P. In a previous study of 10 woody species (four broad-leaved deciduous species, three broad-leaved evergreens and three conifers) conducted during an exceptionally dry year in NW Patagonia, and on the basis of nutrient resorption efficiency and proficiency, we suggested that N was the most limiting nutrient except for the broad-leaved evergreen Lomatia hirsuta. In the present work, we compared patterns of nutrient limitation during a dry and a wet year, quantified the percentage of mycorrhizal infection, and related mycorrhizal behavior and nutrient limitation to soil fertility. We used N and P concentrations in green leaves as indicators of nutrient requirements, and N and P concentrations in senescent leaves (resorption proficiency) and the N/P ratio in green leaves as indicators of nutrient limitation. We also determined leaf mass area (LMA) and lignin concentration as indicators of structural and chemical defences. From previous works, the following soil fertility indicators were included: pH, organic C, total N, exchangeable cations, Olsen-P, potential N mineralization (pNmin) and N retained in microbial biomass (N-MB). Nitrogen, P and lignin concentrations in green and senescent leaves did not differ significantly between the dry and the wet year either by species or by functional groups. Most species behaved as N-proficient and P-non-proficient; this together with values of foliar N/P ratios lower than 14–16 confirmed N limitation in these forests. The only species limited by P but not by N was L. hirsuta (1.0–1.1% N in senescent leaves, N/P ratio = 21–23), a non-mycorrhizal species with cluster roots. The lack of P limitation in the other species was probably related to the high percentages of infection with arbuscular mycorrhizae (80–90% in Maytenus boaria and the conifers Araucaria araucana, Austrocedrus chilensis and Fitzroya cupressoides), and ectomycorrhizae (73–79% in five Nothofagus species). Nitrogen and P requirements were positively correlated among themselves and negatively with lignin and LMA. Soil fertility was positively correlated with nutrient requirements and negatively with lignin and LMA. Conifers had lower N and P requirements, higher LMA, lower foliar N/P ratio and grew on soils of lower soil N dynamics (lower pNmin and N-MB) than ectomycorrhizae-associated species.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号