首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plant growth-promoting rhizobacteria (PGPR) are soil bacteria that are able to colonize rhizosphere and to enhance plant growth by means of a wide variety of mechanisms. In the present study, Myristica yunnanensis and Stenotrophomonas chelatiphaga strains were recognized as new records in Iran flora. According to the results, these strains significantly affected plants’ zinc and phosphorous contents which could be due to the production of phytosiderophore. Siderophore-producing bacteria increased canola zinc (Zn) content as strategy-I plant, while in maize, it can be said that probably the effect of phytosiderophore produced by plant on increasing root and shoot Zn content was more than siderophore produced by bacteria. These isolates could be used as bio-input for improving the plant productivity as a substitute to chemical fertilizers and also to correct the nutrient deficiencies in canola and maize for sustainable agriculture.  相似文献   

2.
The ability of phosphate-solubilizing rhizobacteria to enhance the growth and phosphorus uptake of canola (Brassica napus L., cv. Legend) was studied in potted soil experiments in the growth chamber. One hundred and eleven bacteria isolated from the rhizosphere of field-grown plants, and a collection of nine bacteria known to be effective plant growth-promoting rhizobacteria (PGPR), were screened for P-solubilization in vitro. All rhizobacteria were identified using whole-cell fatty acids methyl ester (FAME) profiles. The best P-solubilizing isolates were two Bacillus brevis strains, B. megaterium, B. polymyxa, B. sphaericus, B. thuringiensis, and Xanthomonas maltophilia (PGPR strain R85). The P-solubilizers were tested for their effects on growth and P-uptake of canola plants in a P-deficient soil amended with rock phosphate. Although some of the P-solubilizing rhizobacteria significantly increased plant height or pod yield, none increased P-uptake. The most effective inoculant was a B. thuringiensis isolate which significantly increased the number and weight of pods and seed yield without rock phosphate. Xanthomonas maltophilia increased plant height, whereas the other bacilli increased the number on weight of pods. These results demonstrate the potential use of these P-solubilizing rhizobacteria as inoculants for canola, but indicate that P-solubilization was not the main mechanism responsible for positive growth response. Received: 8 February 1996  相似文献   

3.
When exposed to biotic or abiotic stress conditions,plants produce ethylene from its immediate precursor 1-aminocyclopropane-1-carboxylate(ACC),leading to retarded root growth and senescence.Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave ACC to form α-ketobutyrate and ammonium,thereby lowering levels of ethylene.The aim of this study was to isolate and characterize ACC deaminase-producing bacteria from the rhizosphere of salt-stressed canola(Brassica napus L.).Out of 105 random bacterial isolates,15 were able to utilize ACC as the sole source of nitrogen.These 15 isolates were also positive for indole acetic acid(IAA) production.Phylogenetic analysis based on partial 16 S rDNA sequences showed that all isolates belonged to fluorescent Pseudomonas spp.In the canola rhizosphere investigated in this study,Pseudomonas fluorescens was the dominant ACC deaminase-producing species.Cluster analysis based on BOX-A1R-based repetitive extragenic palindromic-polymerase chain reaction(BOX-PCR) patterns suggested a high degree of genetic variability in ACC deaminase-producing P.fluorescens strains.The presence of indigenous ACC-degrading bacteria in the rhizosphere of canola grown in saline soils indicates that these bacteria may contribute to salinity tolerance.  相似文献   

4.
Soil phosphorous (P) deficiency is a major constraint to plant production which is overcome by adding inorganic-phosphate as chemical fertilizers. Fluorescent pseudomonads are the diverse group of bacteria able to mobilize sparingly soluble phosphate form. Total three hundred seven fluorescent Pseudomonas isolates were obtained from the Aloe barbadensis (Miller) rhizosphere. These Pseudomonas strains were further evaluated in vitro for their ability to solubilize phosphate and to produce indole acetic acid (IAA), hydrogen cyanide (HCN), siderophore and 1-aminocyclopropane 1- carboxylate (ACC) deaminase. Fifty three (36.8%) isolates produced IAA and 52 (36.1%) isolates produced siderophores whereas 36 (25.0%) and 31 (21.5%) isolates produced HCN and ACC deaminase, respectively. A positive correlation existed between siderophore and ACC deaminase producers. Cluster analysis showed rhizosphere as the major factor influencing the ecological distribution and physiological characterization of phosphate solubilizing bacteria (PSB). Based on partial 16S rRNA gene sequencing PSB were identified as Pseudomonas putida, Pseudomonas sp. and Pseudomonas plecoglossicida with highest phosphate solubilization ability. In conclusion, these phosphate solubilizing fluorescent pseudomonads would help in understanding their role in phosphorus solubilization and identification of potent phosphorus solubilizers from the rhizosphere of commercially grown A. barbadensis.  相似文献   

5.
species were isolated from the rhizosphere of green gram [Vigna radiata (L.) Wilczek] and some of the rhizobacterial isolates were found to have a wide range of antifungal activity inhibiting growth of the phytopathogenic fungi Aspergillus sp., Curvularia sp., Fusarium oxysporum and Rhizoctonia solani in culture. These isolates also showed slight inhibition of the growth of a Bradyrhizobium strain (Vigna) in a spot test which was mainly a result of nutrient competition as culture supernatants of the Pseudomonas isolates did not inhibit the growth of bradyrhizobia but inhibited the growth of fungi. The rhizobacterial isolates produced siderophores in Fe-deficient succinate medium. However, the inhibition of fungal growth by different Pseudomonas isolates in Luria Bertani and King's medium B which were not limiting in Fe3+ ions suggested that, besides siderophores, other antifungal compounds (antibiotics) produced by these rhizobacteria were involved in antagonism. On coinoculation of green gram with Pseudomonas strains MRS13 and MRS16 and Bradyrhizobium sp. (Vigna) strain S24, there was a significant increase in nodule weight, plant dry weight and total plant N as compared to inoculation with Bradyrhizobium strain S24 alone, suggesting that the nodule-promoting effects of Pseudomonas sp. lead to an increase in symbiotic N fixation and plant growth. Received: 27 October 1997  相似文献   

6.
Plant growth promoting rhizobacteria (PGPR) promote the plant growth by various direct and indirect mechanisms. The present study was undertaken to isolate and characterise the PGPRs of plum (Prunus domestica) rhizosphere in Pakistan. A total of 95 rhizobacteria were isolated, out of which 40 strains were selected on the basis of morphological, biochemical and Gram staining characteristics. The selected isolates were screened for in vitro plant growth promoting potential and were subsequently evaluated for host plant growth promotion. The selected isolates demonstrated strong lytic enzymatic activities and were able to produce ammonia, siderophore, Hydrogen cyanide along with capability of phosphate solubilisation. Moreover, the results showed a significant growth suppression of pathogenic Fusarium oxysporum and Rhizoctonia solani in an in vitro assay. The plant microbe interaction study was carried out using 11 most efficient rhizobacterial strains inoculated to roots of plum plants. The inoculated PGPRs significantly augmented the leaves number per shoot, shoot diameter, shoot length and plant height. The inoculation also significantly increased the chlorophyll contents of leaves, concentration of micro and macro nutrients compared with control. The current study shows the importance of these selected PGPRs as bio-fertilizer to improve the health and productivity of plum species in Pakistan.  相似文献   

7.
Plant growth-promoting rhizobacteria (PGPR) are considered to have a beneficial effect on host plants and may facilitate plant growth by different mechanisms. In this work, the influence of different soil types on the bacterial diversity and the stimulatory effects of selected PGPR on two cultivars of maize were investigated. A set of 292 strains was isolated from the roots and rhizosphere soil of maize cultivated in five different areas of the Rio Grande do Sul State in Brazil. 16S rDNA-PCR-RFLP and 16S rDNA partial sequencing were used for identification, and the Shannon–Weaver index was used to evaluate bacterial diversity. We evaluated the ability of each isolate to produce indole acetic acid (IAA), siderophores and solubilize phosphates. On the basis of multiple PGP traits, six isolates were selected to test their potential as plant growth-promoting rhizobacteria on maize plants. In both the roots and the rhizospheric soil of maize, the dominant bacterial genera identified were Klebsiella and Burkholderia. IAA producers were distributed widely among isolates, regardless of the sampling site. Approximately 42% of the isolates exhibited at least two attributes, and 24% showed all three PGP traits. Three strains, identified as Achromobacter, Burkholderia, and Arthrobacter, were effective as PGPR in both of the cultivars evaluated.  相似文献   

8.
Salinity is one of the most important growth-limiting factors for most crops in arid and semi-arid regions; however, the use of plant growth-promoting rhizobacteria isolated from saline soils could reduce the effects of saline stress in crops. This study aimed to evaluate the efficiency of plant growth-promoting rhizobacteria (PGPRs), isolated from the rhizosphere of halophile plants, for the growth, Na+/K+ balance, ethylene emission, and gene expression of wheat seedlings (Triticum aestivum L.) grown under saline conditions (100 mmol L-1 NaCl) for 14 d. A total of 118 isolates obtained from saline soils of the deserts of Iran were tested for their capacity as PGPRs. Out of the 118 isolates, 17 could solubilize phosphate (Ca3(PO4)2), 5 could produce siderophores, and 16 could synthesize indole-3-acetic acid. Additionally, PGPRs were also evaluated for aminocyclopropane-1-carboxylate deaminase activity. A pot experiment was conducted to evaluate the ability of 28 PGPR isolates to promote growth, regulate Na+/K+ balance, and decrease ethylene emissions in plants. The most efficient PGPRs were Arthrobacter aurescens, Bacillus atrophaeus, Enterobacter asburiae, and Pseudomonas fluorescens. Gene expression analysis revealed the up-regulation of H+-PPase, HKT1, NHX7, CAT, and APX expression in roots of Enterobacter-inoculated salt-stressed plants. Salt-tolerant rhizobacteria exhibiting plant growth-promoting traits can facilitate the growth of wheat plants under saline conditions. Our results indicate that the isolation of these bacteria may be useful for formulating new inoculants to improve wheat cropping systems in saline soils.  相似文献   

9.
Summary Volatile metabolites from a number of rhizosphere pseudomonads prevented lettuce root growth in a seedling bioassay. One of these metabolites was identified as cyanide. Direct contact between rhizobacteria and plant roots produced, with one exception, similar responses. However, not all cyanogenic isolates were plant-growth-inhibitory rhizobacteria. When grown in liquid culture, cyanogenic strains produced an average of 37 nmol HCN ml–1 over a 36-h period and inhibition of root growth occurred at concentrations as low as 20 nmol ml–1. Cyanogenic strains introduced into sand or soil also produced HCN. Two cyanogenic strains ofPseudomonas fluorescens, one (5241) a plant-growth inhibitory rhizobacterium and the other (S97) a plant-growth-promotory rhizobacterium, were used to treat bean and lettuce seedlings prior to planting in soil. Lettuce dry weight was reduced by 49.2% (day 28) and 37.4% (day 49) when inoculated with S241 whereas S97 increased growth initially (+64.5% at day 28, no difference from control at day 49). Equivalent figures for inoculated bean plants were: –52.9% and –65.1% (5241); +40.7% and +23.3% (S97). A more detailed experiment using only bean plants confirmed these contrasting affects. Inhibition by S241 was related to consistently higher levels of rhizosphere cyanide in comparison with S97-treated plants and control soils. S241 also survived in the rhizosphere at higher densities and for a longer period of time than S97. The possible contribution of rhizobacterial cyanogenesis to plant growth inhibition is discussed.  相似文献   

10.
This study shows the effect of co-inoculation of three bacterial isolates, viz. Bacillus firmus KUCr1, Cellulosimicrobium cellulans KUCr3 and Pseudomonas aeruginosa KUCd1, on selected growth parameters of amaranth plants. KUCr1 and KUCr3 are reported to be P-solubilizers and indole acetic acid (IAA) producers, and KUCd1 is a siderophore producer. Co-inoculation of the three isolates gave the best results for overall growth of amaranth plants followed by co-inoculation with KUCr1 and KUCd1, then KUCr1 alone. Among the test isolates, KUCr1 and KUCd1 were found to be better rhizosphere colonizers when co-inoculated. KUCr1 and KUCr3 when co-inoculated produced more IAA in liquid medium. Co-inoculation gave insignificant variation in P-solubilization, but siderophore production by KUCd1 was greatly enhanced when inoculated with other isolates in culture conditions. The augmentation of plant growth, whenusing a consortium culture, might be due to better IAA production andsiderophore production by the test isolates. This report suggests that co-inoculation of microbes promotes plant growth better than individual isolates.  相似文献   

11.
In literature, it remains little explored the soil–plant relationships within Capsicum agroecosystem. We studied how chili peppers plants contribute to influence microbial diversity. Across the bulk and rhizosphere soils of three genotypes of Capsicum annuum, the structure, the diversity and the abundance of bacteria was evaluated by means of DNA-based culture-independent approach. Furthermore, 515 bacterial strains isolated from the bulk and rhizosphere soil, were used to investigate the effect of C. annuum on four plant growth promoting bacteria (PGPB) abilities. Our results indicated that the three genotypes influence differently the physical-chemical and microbial properties of soil around the roots. Bacterial abundance resulted in increasing with different trend rhizospheres to bulk soil ratio; however, bacterial diversity was significantly higher only in the rhizosphere of one genotype. Only the indolic compounds production was stimulated in the rhizosphere of the three cultivars. Inhibition of Fusarium oxysporum was stimulated just with one genotype, where 53 of rhizosphere isolates showed more than 10% of inhibition. 165 of isolates produced siderophores and the major part belonged to the high production level. Interactions between PGPB features revealed that anti-phytopathogenic activity was not associated with the others characteristics; however, phosphate solubilization was associated with both siderophores and indolic compounds productions.  相似文献   

12.
Plant growth promoting rhizobacteria (PGPR) enhance the plant growth directly by assisting in nutrient acquisition and modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens. The aim of this study was to select effective PGPR from a series of indigenous bacterial isolates by plant growth promotion and antifungal activity assays. This study confirmed that most of the isolates from maize rhizosphere were positive for PGPR properties by in vitro tests. Azotobacter and Bacillus isolates were better phosphate solubilizers and producers of lytic enzymes, hydrocyanic acid (HCN), and siderophores than Pseudomonas. Production of indole-3-acetic acid (IAA) and antifungal activity were the highest in Azotobacter, followed by Bacillus and Pseudomonas. The most effective Azotobacter isolates (Azt3, Azt6, Azt12) and Bacillus isolates (Bac10, Bac16) could be used as PGPR agents for improving maize productivity. Further selection of isolates will be necessary to determine their efficiency in different soils.  相似文献   

13.
Summary A microbial growth medium, RSM, was developed to study the role of siderophores (microbial Fe-transport compounds) in the inhibition of the take-all pathogen, Gaeumannomyces graminis var. tritici, by Pseudomonas putida strain B10. The inorganic constituents of the medium were designed to mimic the rhizosphere while the organic composition was designed to promote rapid growth and siderophore production. The antibiosis experiments were highly reproducible and the antagonism appeared to be due to production of pseudobactin, the siderophore of B10. On plates amended with chrome azurol S, G. graminis did not produce siderophores while other fungi did. The growth of G. graminis on plates prepared with Fe chelate buffers was inhibited at a free ferric ion concentration of 10–24.6 M, although three other fungi were not inhibited, even at 10–25.5 M, presumably due to their greater production of siderophores. In liquid medium amended with Fe chelate buffers, both the doubling time and the lag phase of P. putida increased as the free ferric ion concentration was reduced. A wide variety of fungi and bacteria were found to grow on this medium. Because the inorganic composition of RSM is based on that of the rhizosphere, the development of this medium may be a first step towards the study of the chemistry and biology of the rhizosphere under well defined conditions.  相似文献   

14.
Phytoremediation is a promising approach for reclamation of salt-affected soil. Phytoextraction is the most commonly used process, which exploits plants to absorb, immobilize, and accumulate salt in their shoots. In this study, halotolerant plant growth-promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wild grasses growing naturally in salt-affected areas of Lucknow, Uttar Pradesh (India) and were tested for their efficacies of salt-tolerance and plant growth-promoting (PGP) abilities. Based on 16S rRNA sequences, the most efficient halotolerant isolates possessing PGP traits were identified as Pseudomonas plecoglossicida (KM233646), Acinetobacter calcoaceticus (KM233647), Bacillus flexus (KM233648), and Bacillus safensis (KM233652). Application of these isolates as bio-inoculants significantly (P < 0.05) increased the growth and bacoside A yield of a medicinal plant, Bacopa monnieri (L.) Nash, grown on natural salt-affected soil. The phytoremediation of salt-affected soil was evident by the substantial increase in shoot Na+:K+ ratio of bio-inoculant-treated plants. When compared to un-inoculated control plants, the soil physico-chemical properties of bio-inoculant-treated plants were improved. The shoot and root biomass (fresh and dry weights), soil enzymes, and soil nutrient parameters showed significant positive correlations with the shoot Na+:K+ ratio. Consequently, the halotolerant PGPR screened in this study could be useful for the reclamation of saline soils concomitant with improved plant growth and bacoside A yield.  相似文献   

15.
Rhizobacteria were isolated from the rhizosphere of different Brassica species and assayed for their ability to produce auxins in vitro. The isolates varied greatly in their potential for auxin production (ranging from 0.33 to 11.40 µg ml-1). L-Tryptophan (an auxin precursor) addition to the media increased the auxin production by several fold. Based upon in vitro auxin production and growth promotion of B. juncea seedlings caused by various isolates under gnotobiotic conditions, promising isolates were selected and tested in pot trial to observe their effects on growth, yield and oil content of the same Brassica species. Results showed that seed inoculation with different isolates of rhizobacteria significantly increased plant height (up to 56.5%), stem diameter (up to 11.0%), number of branches (up to 35.7%), number of pods per plant (up to 26.7%), 1,000-grain weight (up to 33.9%), grain yield (up to 45.4%) and oil content (up to 5.6%) over the uninoculated control. Isolate S54 gave the most promising and consistent results. Highly significant correlations between L-TRP-derived auxin production by plant growth-promoting rhizobacteria (PGPR) in vitro and grain yield (r =0.77**), number of pods (r =0.78**) and number of branches per plant (r =0.77**) of B. juncea were found. It was hypothesized that these PGPR may influence the growth and yield of inoculated plants by production of auxins in the rhizosphere of inoculated plants from the L-TRP present in the root exudates, although other mechanisms of action might have also contributed.  相似文献   

16.
Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water, and air. In order to select the plant growth-promoting rhizobacteria(PGPR) for phytoremediation of heavy metal contamination, 60 bacterial strains were isolated from the rhizosphere of two endemic plants, Prosopis laevigata and Spharealcea angustifolia, in a heavy metal-contaminated zone in Mexico. These rhizobacterial strains were characterized for the growth at different pH and salinity, extracellular enzyme production, solubilization of phosphate, heavy metal resistance, and plant growth-promoting(PGP) traits, including production of siderophores and indol-3-acetic acid(IAA). Overall, the obtained rhizobacteria presented multiple PGP traits. These rhizobacteria were also resistant to high levels of heavy metals(including As as a metalloid)(up to 480 mmol L(-1)As(V), 24 mmol L(-1)Pb(Ⅱ), 21 mmol L(-1)Cu(Ⅱ), and 4.5 mmol L(-1)Zn(Ⅱ)). Seven rhizobacterial strains with the best PGP traits were identified as members of Alcaligenes, Bacillus, Curtobacterium, and Microbacterium, and were selected for further bioassay.The inoculation of Brassica nigra seeds with Microbacterium sp. CE3R2, Microbacterium sp. NE1R5, Curtobacterium sp. NM1R1,and Microbacterium sp. NM3E9 facilitated the root development; they significantly improved the B. nigra seed germination and root growth in the presence of heavy metals such as 2.2 mmol L(-1)Zn(Ⅱ). The rhizobacterial strains isolated in the present study had the potential to be used as efficient bioinoculants in phytorremediation of soils contaminated with multiple heavy metals.  相似文献   

17.
Metal rich fly ash dumps may serve as repository of ecologically useful multi-functional rhizobacteria having potential use in the development of vegetation at the dumps. Therefore, in the present study bacteria from the rhizosphere of a wild perennial grass colonizing Indraprastha and Badarpur fly ash dumps of Delhi region were purified, identified and functionally characterized. The fly ash had low levels of nutrients, moisture and organic matter coupled with toxic levels of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn). Both the dumps were mostly barren except for a few patches of Saccharum ravennae and some weedy species. Sixty five dominant, morphologically distinct rhizobacteria were purified, which belonged to 18 genera and 38 species. Gram-positive bacteria were dominating in the fly ash environment. Bacillus spp. and Paenibacillus spp. were common at both the dumps. Multi-metal tolerance was shown by diverse bacterial taxa. The minimum inhibitory concentration (MIC) was highest for As (12.5-20.0 mM) and Pb (7.5-10.0 mM), although many rhizobacteria also possessed significant tolerance to Cr, Zn, Ni, Cu, Co and Cd. The tolerance profiles of rhizobacteria to different metals may be ranked in the decreasing order as As > Pb > Cr > Zn > Ni > Cu > Co > Cd > Hg. Majority of rhizobacteria showed good siderophore activity. Multiple-metal tolerance was also coupled with high siderophore production in some of the isolates (Microbacterium barkeri IPSr74, Serratia marcescens IPSr90 and IPSr82, Enterococcus casseliflavus BPSr32, Bacillus sp. IPSr80, Pseudomonas aeruginosa BPSr43 and Brochothrix campestris BPSr3). Most of the bacteria could grow on nitrogen-deficient medium. However, the dominant nitrogen-fixers reported from the rhizosphere of other Saccharum species were not detected. S. marcescens IPSr90 was the only rhizobacterium, which showed ACC-deaminase (ACCD) activity. Proportion of phosphate-solubilizing bacteria was high. Considerable improvement in the seedling establishment, plant weight and shoot length in rhizobacterial inoculated plants of S. ravennae in fly ash environment indicated the significance of rhizobacteria in its colonization and spread to the dumps. Representative rhizobacteria, with high MIC (for most of the metals) and good plant growth promoting (PGP) traits comparable to commercially useful bacterial inoculants were identified as S. marcescens IPSr82 and IPSr90, P. aeruginosa BPSr43, Paenibacillus larvae BPSr106, Arthrobacter ureafaciens BPSr55, Paenibacillus azotofixans BPSr107 and E. casseliflavus BPSr32. S. ravennae and some of these rhizobacteria may be potentially useful for the development of inoculation technologies for conversion of barren fly ash dumps into ecologically and economically productive habitats.  相似文献   

18.
Summary A lysimetric experiment was performed in a greenhouse to evalute root deposition and net release of soluble organic compounds after 1 and 2 years from pine and beech seedlings inoculated with an ectomycorrhizal fungus (Laccaria laccata) and/or rhizobacteria (Agrobacterium radiobacter for beech and Agrobacterium sp. for pine). Total C compounds released in the rhizosphere of both plants increased after inoculation with the bacteria or ectomycorrhizal fungus. The rhizobacteria increased root and plant growth and rhizodeposition, but the mycorrhizal fungi appeared to increase only root deposition. Soluble C compounds, collected after 2 years, represented only 0.1–0.3% of the total C compounds released into the rhizosphere, and were modified by inoculation with the microorganisms. After inoculation with the bacteria, levels of sugars and amino acids decreased in pine and beech rhizospheres, whereas organic acids increased, especially in the pine rhizosphere. In the rhizosphere of mycorrhizal beeches, sugar and amino acids increased, and organic acids differed from those released from non-mycorrhizal beeches. In the mycorrhizal pine rhizosphere, however, all compounds decreased. Following dual inoculations, mycorrhizal colonization increased, no effect on plant growth was observed, and virtually no organic acids were detected.  相似文献   

19.
Summary Siderophores produced by rhizosphere bacteria may enhance plant growth by increasing the availability of Fe near the root or by inhibiting the colonization of roots by plant pathogens or other harmful bacteria. To examine the populations of siderophore-producing bacteria colonizing the roots of two grass species that differed in their susceptibility to Fe deficiency, we inoculated serial dilutions of root samples onto chrome azurol S (CAS) agar and several other selective and non-selective culture meida. CAS agar effectively differentiated bacteria that were capable of excreting large amounts of siderophore, but the composition of the medium limited its usefulness for ecological studies. A large proportion (71–79%) of the bacterial population that grew on a non-selective medium (tryptic soy agar) failed to grow on CAS agar, and several isolates that showed no sign of siderophore production on CAS agar produced siderophore in liquid culture. Similar populations of siderophore-producing bacteria were observed on roots of St. Augustine grass, which frequently exhibits Fe chlorosis, and bermuda grass, which does not. Roots of both grasses were colonized by bacteria that produced siderophore in vitro at concentrations ranging from 100 to 230 M. The CAS assay solution was also used to compare siderophore production by Pseudomonas fluorescens Q6, an isolate from bermuda grass, and by P. putida B 10, a plant growth-promoting pseudomonad. P. fluorescens Q6 produced 2.4 times more siderophore in vitro than P. putida B 10.  相似文献   

20.
Enhancement of manganese (Mn) availability in saline and Mn-deficient soils is very important for plant growth. An experiment was carried out to evaluate the effect of Pseudomonas sp. rhizobacteria (P0 (control), P1, P2 and P3) and Mn (0 and 10 mg Mn kg?1 soil) on the distribution of Mn in the rhizosphere of pistachio seedlings under salinity stress (0, 1000 and 2000 mg NaCl kg?1 soil). The results showed that salinity decreased the dry weight, Mn uptake and chlorophyll content of the pistachio seedlings. However, inoculation with rhizobacteria increased these parameters in saline conditions. Application of rhizobacteria increased the availability of Mn in the rhizosphere soil. The use of rhizobacteria decreased the residual-Mn form in the rhizosphere. Inoculation with rhizobacteria increased the percent of Mn2+ and MnCl+ species in the soil solution. However, pistachio seedlings inoculation with rhizobacteria increased the contents of Mn available forms in the rhizosphere soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号