首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
提取秦川牛血液DNA样品,PCR扩增后,通过非变性PAGE电泳获得基因型,然后进行测序确定微卫星的基因型,研究Y-STR微卫星位点UMN0929、UMN0108、UMN0920、INRA124、UMN2404、UMN0103在秦川牛群体中的遗传多态性.结果发现,176头无亲缘关系的秦川牛,公牛中在6个Y-STR基因座均有遗传多态.UMN0929、UMN0108、UMN0920、 INRA124、UMN2404、UMN0103的等位基因数分别为 4、5、2、2、5和4,其等位基因频率分别为0.14、0.57、0.18、0.11, 0.10、0.10、0.35、0.35、0.10,0.25、0.75,0.24、0.76,0.10、0.35、0.33、0.12、0.10,0.17、0.14、0.35、0.34;基因多样性分别为0.61、0.73、0.38、0.36、0.73、0.71;共发现了51种单倍型,单倍型多样性为0.94.表明UMN0929、UMN0108、UMN0920、 INRA124、UMN2404和UMN0103 6个微卫星位点在秦川牛群体中有遗传多态性,在秦川牛的起源研究和个体识别以及亲子鉴定中有较高的应用价值.  相似文献   

2.
中国西南7品种黄牛Y染色体微卫星多态性分析   总被引:1,自引:0,他引:1  
对中国西南地区7个黄牛品种81头公牛在4个Y染色体特异微卫星的多态性进行了研究,发现4个微卫星中只有2个,即UMN2404和UMN0103具有多态性,UMN2404具有普通牛(104、91 bp)和瘤牛(120、110和85bp)所特有的单倍型,UMN0103也呈现出能够区分普通牛(155、140 bp)和瘤牛(1361、25 bp)的单倍型,2个标记对不同品种或个体的鉴别一致率达到100%。通过对UMN2404和UMN0103的分析揭示了西南地区黄牛中普通牛和瘤牛Y染色体的分布频率,瘤牛Y染色体单倍型频率(72.8%)显著高于普通牛(27.2%)。普通牛Y染色体单倍型频率在西藏牛(100%)和迪庆牛(81.8%)中占有优势;而瘤牛单倍型在西南地区其他牛种群中占有优势(76.5%~100%)。  相似文献   

3.
旨在利用微卫星技术检测晋南牛、郏县红牛、鲁西牛和秦川牛四大地方黄牛的牛群遗传多样样及遗传结构。采用16个微卫星DNA标记对4个牛群进行检测分析。16个微卫星DNA标记中,除HEL9位点在所有牛群中呈单态外,其他15个位点的有效等位基因数为2~8个,平均有效等位基因数为3.067 6个。BM1818为低度多态(PIC=0.083 0,PIC0.25),其余位点均为高度多态(PIC0.5),其中HUAT24多态性最大(PIC=0.727 5)。4个牛群共检测到80个等位基因,其中晋南牛为63个,郏县红牛为65个,鲁西牛65个,秦川牛68个。在IDVGA46位点,仅有晋南牛有B等位基因,而在TGLA44位点,仅有晋南牛没有B等位基因。4个牛群的平均表观杂合度为0.385 2,平均期望杂合度为0.640 3,平均杂合度为0.578 0。晋南牛在NJ树上单独聚为一支,与鲁西黄牛、郏县红牛及秦川牛的遗传距离分别为0.809 3、0.759 8、0.807 1。结果表明,晋南牛遗传资源独特,群体遗传多样性丰富,是一个生长进化上较为封闭的群体。  相似文献   

4.
选用西门塔尔牛、夏洛来牛、利木赞牛、安格斯牛、晋南牛、秦川牛、鲁西牛作为实验动物群体。分析了7个肉牛群体中8个微卫星位点(BM8125、RM113、TEXAN2、FCB48、INRA027、IDVGA37、BMS2137、ILSTS098)的遗传结构和遗传变异。结果显示:8个位点中的前6个位点在7个群体中呈高度多态性,根据这8个微卫星多态性在8个群体间的遗传距离绘制的系统聚类图,能比较准确地反映这7个牛群体的地理分布和它们的亲缘关系。  相似文献   

5.
为了研究甘肃高山细毛羊的遗传多样性,为地方山羊品种的选种、选育及保种工作奠定基础.本研究选取位于绵羊第25号染色体上的微卫星标记BMS1714和INRA61,对其进行遗传多样性研究.结果表明:微卫星标记BMS1714和INRA61在甘肃高山细毛羊上呈现多态性.BMS1714基因座有10个等位基因,其片段大小在121~138 bp之间;BMS1714基因座多态信息含量(PIC)、有效等位基因数(Ne)、平均杂合度(He)分别为0.714,4.029,0.731.INRA61基因座有11个等位基因,其片段大小在279~292bp之间;INRA61基因座的PIC、Ne、He分别为0.776,5.127,0.809.由此表明,微卫星位点BMS1714和INRA61在甘肃高山细毛羊上均为高度多态位点,可用于甘肃高山细毛羊的遗传多样性分析.  相似文献   

6.
采用mtDNA和微卫星DNA两种标记方法,对夏南牛与13个黄牛群体的179个个体进行遗传多样性和群体间的亲缘关系及母系起源分析。通过测定14个黄牛群体179条mtDNA D-loop区序列,共发现124个变异位点和60种单倍型,表明14个黄牛群体具有丰富的遗传多样性。夏南牛群体mtDNA D-loop区序列共发现49个变异位点和7种单倍型,单倍型多样度(Hd)为0.732±0.017,其单倍型多样度较中国地方牛种低,中国黄牛具有更丰富的遗传多样性。通过测定9个具有高度多态性的微卫星座位的等位基因数(Na)、平均杂合度(H)和多态信息含量(PIC),表明9个微卫星位点在60个夏南牛个体中共发现47个等位基因,平均每个位点的有效等位基因数为1.229~6.584。总群体的PIC和H分别为0.608~0.798和0.695~0.837,夏南牛的PIC和H分别为0.692和0.715,夏南牛的遗传多样性较中国黄牛低,中国黄牛群体的遗传多样性高于外来牛种,这一结果和群体间mtDNA D-loop区研究结果一致。构建的NJ系统进化树显示14个黄牛群体主要起源于普通牛和瘤牛,夏南牛受瘤牛的影响更大,具有瘤牛和普通牛的种质特征。本研究为夏南牛遗传资源的保护、合理利用和选育改良提供了理论依据。  相似文献   

7.
为了解甘肃高山细毛羊的遗传多样性,为地方绵羊品种的选种、选育及保种工作奠定基础,选取位于绵羊第25号染色体上的微卫星标记BMS1714和INRA61,对其进行遗传多样性研究。结果表明:BMS1714基因座有10个等位基因,PCR扩增片段大小在121~138 bp之间;优势等位基因为138,优势基因型为138/138;多态信息含量(PIC)、有效等位基因数(Ne)、平均杂合度(He)分别为0.714、4.029和0.731。INRA61基因座有11个等位基因,PCR扩增片段大小在279~292 bp之间;优势等位基因为286,优势基因型为286/286;PIC、Ne、He分别为0.776、5.127和0.809。因此,甘肃高山细毛羊超细毛品系微卫星位点BMS1714和INR A61均呈现高度多态,这两个位点可用于甘肃高山细毛羊的遗传多样性分析。  相似文献   

8.
为了解安徽白山羊保种群的遗传多样性,试验选取了具有较高多态性的7个微卫星标记,进行了安徽白山羊保种群的遗传多样性分析。结果表明:7个微卫星标记共检测到45个等位基因和54种基因型,以OarAE54等位基因和基因型数量最多,DRBP1等位基因和基因型数量最少,每个标记的平均等位基因数为6.43个;7个微卫星标记的多态信息含量和平均杂合度均高于0.85,显示为高度多态;OarAE54标记的群体遗传杂合度高达0.864。说明安徽白山羊保种群群体遗传多样性丰富。  相似文献   

9.
《中国蜂业》2015,(8):21-23
本研究利用微卫星DNA方法对海南中蜂蜜蜂群体多态性进行研究,评估品种内的遗传变异。结果共检测到55个等位基因,平均每个位点的等位基因数为11,单个位点的等位基因数从8到13不等。所有位点的平均PIC值与平均期望杂合度分别为0.7569(0.0330)与0.8577(0.0267)。表明海南中蜂群体具有较高的多态性,显示出丰富的遗传多样性和较高的选择潜力,可为分析遗传多样性提供充分的信息。  相似文献   

10.
应用结构基因座和微卫星DNA两种遗传标记探讨长江三角洲白山羊群体遗传结构。结果表明,检测的9个结构基因座位上7个存在多态性,座位的基因平均杂合度、多态信息含量及有效等位基因数分别为0.1767、0.1457和1.2837;7个微卫星位点上共检测到110个等位基因,位点的基因平均杂合度、多态信息含量及有效等位基因数分别为0.8867、0.8774和11.2907。群体内的遗传变异程度相对较高,反映出丰富的遗传多样性,而且微卫星DNA标记揭示的遗传变异高于结构基因座。  相似文献   

11.
To assess the paternal gene pool in the Lidia bovine breed (or fighting bull), a total of 603 animals belonging to 81 herds classified in 33 lineages were genotyped for six Y chromosome microsatellites, one single nucleotide polymorphism and one indel. A total of 10 haplotypes were determined with a high level of frequency variation between them, ranging from 0.2 to 74%. All the haplotypes identified belong to two previously defined major haplogroups (Y1 and Y2). Two major paternal influences were identified, corresponding to the two most common haplotypes (H1Y1 and H3Y2) with frequencies of 74 and 18%, respectively. The detection of the INRA189-104 allele evidenced an African influence in the Lidia bovine breed. Low levels of haplotype diversity have been achieved and only eight lineages showed more than one haplotype. Analysis of molecular variance showed a high level of interlineage variance (F(ST) = 86%). Network results evidenced two main clusters made for those haplotypes belonging to Y1 and Y2 haplogroups, respectively. The findings support a high level of genetic structure together with a low level of genetic diversity in the Lidia bovine breed.  相似文献   

12.
中国西门塔尔牛产奶性状与微卫星标记相关分析   总被引:3,自引:0,他引:3  
利用微卫星技术对中国西门塔尔牛育种核心群中152头母牛第6号染色体上9个微卫星位点进行了研究,检测其基因型,利用SAS程序下的GLM,对8个微卫星位点进行产奶性状关系的最小二乘方差分析,找出各位点对产奶性状的影响差异。同时,在一些位点上找到对产奶性状有利的基因型。  相似文献   

13.
本研究利用微卫星技术对中国西门塔尔牛育种核心群中的152头母牛第6号染色体上的9个微卫星位点进行检测,测定各位点的基因型。利用SAS程序中的GLM过程对8个微卫星位点进行体细胞数相关性的最小二乘方差分析,找出不同位点及各位点基因型对体细胞数的影响差异。  相似文献   

14.
Up to 173 African sires belonging to 11 different subpopulations representative of four cattle groups were analysed for six Y‐specific microsatellite loci and a mitochondrial DNA fragment. Differences in Y‐chromosome and mtDNA haplotype structuring were assessed. In addition, the effect of such structuring on contributions to total genetic diversity was assessed. Thirty‐five Y‐chromosome and 71 mtDNA haplotypes were identified. Most Y‐chromosomes analysed (73.4%) were of zebu origin (11 haplotypes). Twenty‐two Y‐haplotypes (44 samples) belonged to the African taurine subfamily Y2a. All mtDNA haplotypes belonged to the “African” taurine T1 haplogroup with 16 samples and nine haplotypes belonging to a recently identified subhaplogroup (T1e). Median‐joining networks showed that Y‐chromosome phylogenies were highly reticulated with clear separation between zebu and taurine clusters. Mitochondrial haplotypes showed a clear star‐like shape with small number of mutations separating haplotypes. Mitochondrial‐based FST‐statistics computed between cattle groups tended to be statistically non‐significant (> .05). Most FST values computed among groups and subpopulations using Y‐chromosome markers were statistically significant. AMOVA confirmed that divergence between cattle groups was only significant for Y‐chromosome markers (ΦCT = 0.209). At the mitochondrial level, African sires resembled an undifferentiated population with individuals explaining 94.3% of the total variance. Whatever the markers considered, the highest contributions to total Nei's gene diversity and allelic richness were found in West African cattle. Genetic structuring had no effect on patterns of contributions to diversity.  相似文献   

15.
哺乳动物的性染色体由一对常染色体演化而来,其中X染色体在物种间相对保守,而Y染色体则存在很大的变异,包括染色体的大小、结构和基因数量等.研究Y染色体的遗传结构与变异,对于理解哺乳动物的起源进化、性别决定以及动物繁殖都具有重要意义.因此,文章综述了哺乳动物Y染色体的结构与变异,以及Sanger测序技术、二代测序技术、三代...  相似文献   

16.
Y CHROMOSOME MORPHOLOGY OF CATTLE   总被引:1,自引:0,他引:1  
Metaphase chromosomes from cultured lymphocytes were prepared from 246 bulls including Bos indicus, Bos taurus. Bos (Bibos) banteng, Sanga and interspecific and intra-specific breed crosses. Morphology and karyotype position of the Y chromosome for each bull were noted. Karyotype position of the Y chromosome varied between bulls from 25th to 29th pair and the Y chromosomes of Bos indicus and breeds derived from Bos indicus bulls were acrocentric while those of Bos taurus, Sanga and breeds derived from these bulls were metacentric/submetacentric. Two forms of Y chromosome were noted in the Droughtmaster breed. C-banding patterns of the acrocentric Y chromosome were characteristic and enabled easy identification.  相似文献   

17.
Y染色体分子遗传多样性是追溯动物起源、驯化历史和迁徙路线的重要工具,也可以用来反映动物的父系遗传多样性及用于研究群体间父系介导的杂交情况。Y染色体单倍型多样性可以分别通过Y染色体单核苷酸多态性(Y-SNP)和Y染色体微卫星多态性(Y-STR)或这二者结合起来构建精确的Y染色体单倍型。黄牛有3种父系起源(普通牛Y1、Y2和瘤牛Y3单倍型组),可以通过Y-SNP来区分,通过-STR标记可以区分Y1、Y2和Y3所具有的丰富的精细单倍型。本文汇集了包括中国在内的国内外黄牛Y染色体遗传多样性与起源进化的研究进展。  相似文献   

18.
秦川牛的染色体研究   总被引:7,自引:0,他引:7  
对秦川牛(12♂,3♀)染色体的核型、G带、C带及Ag-NOR_s的研究表明:秦川牛品种内Y染色体存在多态现象,Y染色体有中、亚中和近端着丝点染色体。中和亚中着丝点Y染色体G带和C带与普通牛(Bos taurus)相同,近端着丝点Y染色体G带和C带与瘤牛(Bos indicus)相同。根据Y染色体多态性,讨论了秦川牛起源的多元性。统计了2002个细胞的Ag-NOR_s数目,每细胞Ag-NOR_s数变化范围3~10个,平均5.473±0.316。  相似文献   

19.
The solute carrier family 11 member A1 (SLC11A1) gene is associated with resistance to infectious diseases. Chromosomal localisation, genomic regions corresponding to functional domains and the genetic variability of microsatellites in the 3' untranslated region (3'-UTR) of this gene were investigated in 427 goats (Capra hircus) of six breeds. Using dual colour fluorescence in situ hybridisation, SLC11A1 was localised to goat chromosome 2. Single strand conformation polymorphism was used to screen for polymorphisms in SLC11A1 exons 2, 10 and 15. There was no variation among goat breeds in the sarcoma homology 3 (SH3) binding motif, the protein kinase C phosphorylation site or the two N-linked glycosylation sites. Exon 15 exhibited variability due to the presence of two polymorphic microsatellites. Genotyping of the upstream guanine-thymine repeat (GTn) at 3'-UTR revealed eight alleles (GT11, GT12, GT14-GT19) in goats, whereas GT13 (present in cattle) was absent. Most goats carried the GT16 allele and no allele was found to be exclusive to only one breed. The coefficient of genetic differentiation value (G(ST)) was 0.084. This microsatellite appears to be an informative DNA marker for genetic linkage analysis in goats.  相似文献   

20.
Recently a report on the reindeer chromosomes was published (Nes et al. 1965). The chromosome complement was described as consisting of 70 autosomes and a sex chromosome set of the XY-type. All autosomes were acrocentric except one pair which was submetacentric. The X was found to be submetacentric and also the largest chromosome of the complement. The Y was characterized as being the smallest acrocentric chromosome, and the authors stated that the Y chromosome could only occasionally be distinguished from the autosomes by its shorter length.In our studies of the same species we have found a quite different appearance concerning the Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号