首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic carbon stocks and soil erodibility in Canary Islands Andosols   总被引:3,自引:0,他引:3  
Soil organic carbon (SOC) plays a key role in the structural stability of soils and in their resistance against erosion. However, and as far as andic soils are concerned, these mechanisms and processes, as well as the influence of the different types of SOC on aggregate stability, are not fully understood. The targets of this paper are: (i) to determine the content and forms of SOC in Andosols under evergreen forest vegetation [laurel (Laurus) and heather (Erica) forest] and (ii) to find out the role of soil organic matter (SOM) in the aggregate stability and in the resistance of Andosols to water erosion. Soil samples have been collected in 80 sites in a 40 km2 area under udic soil moisture regime. In them, fulvic and humic acids, Walkley–Black SOC, pyrophosphate-extractable SOC, Fe and Al, potassium sulphate extractable SOC, dissolved SOC, acid oxalate-extractable Fe, Al and Si, USLE K-factor and aggregate stability have been determined. The Andosols over volcanic ash are Aluandic Andosols (non-allophanic Andosols), whereas over basaltic lava flows are Silandic Andosols (allophanic Andosols). The surface (0–30 cm) samples analyzed contain 9.5–30 kg C m− 2 being significantly higher in allophanic Andosols (p < 0.5). Organic carbon adsorbed onto the mineral fraction (extractable pyrophosphate, Cp) accounts for 35–55% of the total SOC. All samples show a high stability to slaking and raindrop impact, being the first one highly correlated (r = 0.6) with pyrophosphate extractable C (Cp), Fe (Fep), and Al (Alp) in allophanic Andosols, unlike non-allophanic ones. The stability to raindrop impact correlates with pyrophosphate extractable C (Cp) and Fe (Fep) in both types of soils (r = 0.3–0.6, p < 0.05). These findings suggest that the high stability to both slaking and water-drop impact is due to the occurrence of allophane–Fe–OC complexes, rather than to the total OC, and the active Fe and Al forms, generated by the weathering of volcanic materials, constitute an essential constituent responsible for C sequestration and resistance to degradation in these soils.  相似文献   

2.
Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 μm by wet sieving. Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability of SOC was lowest in the allophanic and chloritic soil, higher in the kaolinitic soils and highest in the smectitic soil. Our results contrast with conventional concepts of the greater capacity of smectite than of kaolinite to stabilize SOC. Contents of dithionite-citrate-bicarbonate extractable Fe and Al were inversely related to SOC lability when compared across soil types. A stronger inverse correlation between content of ammonium-oxalate extractable Fe and SOC lability was found when considering the kaolinitic soils only and we conclude that the content of active Fe (hydr-) oxides controls SOC stabilization in the kaolinitic soils. Our results suggest that the validity of predictive models of SOC turnover in tropical soils would be improved by the inclusion of soil types and contents of Fe and Al (hydr-) oxides.  相似文献   

3.
中国亚热带红壤团聚体稳定性与土壤化学性质的关系   总被引:16,自引:1,他引:16  
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and Al oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates, especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm. In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

4.
鄂南第四纪粘土红壤团聚体的稳定性及其稳定机制初探   总被引:11,自引:1,他引:11  
用湿筛法和LeBissonnais法研究了鄂南第四纪红粘土母质发育的两种侵蚀程度的红壤团聚体的稳定性,并且分析了影响供试土壤团聚体稳定性的土壤性质。结果表明,轻度侵蚀的耕作土壤团聚体的稳定性较低,在水的作用下易崩解成较小粒径的水稳性团聚体;强度侵蚀的土壤表层团聚体的稳定性较高,崩解后产生较多的水稳性大团聚体。引起土壤团聚体破坏的主要作用机制是土壤团聚体中的闭蓄空气爆破引起的消散作用;研究区第四纪红壤团聚体的主要胶结物质是土壤中的粘粒、游离氧化铁铝和无定形铁。由于供试土壤中有机质含量很低,在本研究中,有机质含量与土壤团聚体稳定性之间没有显著正相关关系。  相似文献   

5.
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and A1 oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates,especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm.In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

6.
A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicaxbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms, independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.  相似文献   

7.
Purpose

Several interactions between Al and the solid phase of soil influence Al buffering in soil solution. This work evaluated soils cultivated with Pinus taeda L. to determine Al forms in organic and mineral horizons using various extraction methods and to relate acidity with clay mineralogy.

Materials and methods

Organic and mineral horizons of 10 soil profiles (up to 2.1 m deep) in southern Brazil were sampled. Organic horizons were separated into fresh, aged, and fermented/humified litter. The following Al extraction methods were utilized: 0.5 mol L?1 pH 2.8 CuCl2–Al complexed in organic matter; 1.0 mol L?1 KCl–exchangeable Al; water–Al soluble in soil solution; HF concentrated?+?HNO3 concentrated?+?H2O2 30% (v/v)–total Al. Six sequential extractions were carried out to isolate different forms of amorphous minerals that can buffer Al on soil solution: 0.05 and 0.1 mol L?1 sodium pyrophosphate; 0.1 and 0.2 mol L?1 ammonium oxalate; 0.25 and 0.5 mol L?1 NaOH. Samples of clay were also analyzed by XRD.

Results and discussion

There was a clear effect of litter age on increasing total Al concentration. In the aged litter and fermented and/or humified litter, levels of total Al were 1.4 to 3.8 and 1.5 to 7.8 times greater than in fresh litter, respectively. The CuCl2 method had higher Al extraction capacity than the KCl method for litter. The lowest Al–pyrophosphate values were observed in the Oxisol, which also had a predominance of gibbsite and the lowest levels of Al–KCl and Al–CuCl2. There was an inverse relationship between degree of soil weathering and soluble and exchangeable Al in soils. Available Al increased with higher Si proportion in minerals of the clay fraction (2:1?>?1:1?>?0:1).

Conclusions

The worst scenario was soils with the combination of high soluble and exchangeable Al levels and high concentrations of amorphous forms of Al minerals. The best predictors of Al accumulation in the youngest litter horizon were extractions of amorphous minerals with pyrophosphate and NaOH. These extractors are normally used to predict the level of Al buffering in soils. Organic matter had less influence on Al dynamics in soils.

  相似文献   

8.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

9.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   

10.

Purpose

Chemical protection facilitates soil organic carbon (SOC) sequestration and stabilisation due to a strong chemical binding with mineral surfaces and metal ions (e.g. iron [Fe], aluminium [Al] and calcium [Ca]). However, there is not much information regarding the role of chemical protection in SOC stabilisation in paddy soils, particularly in terms of the specific forms of organo-mineral complexes such as Fe-, Al- and Ca-bonded OC.

Materials and methods

We sampled paddy soils at the 0–20 cm soil layer from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilisation treatments (i.e. control treatment without fertiliser [CK], chemical fertiliser only [CF], green manure [GM], Straw and Manure) with equivalent nutrient inputs (i.e. N, P2O5 and K2O at the rates of 135–67.5–135 kg ha?1, respectively, for both early and late rice) except CK. We determined the chemical binding forms of SOC and the associated soil properties in the particulate fraction (PF, >53 μm) and the mineral-associated fraction (MAF, <53 μm), which were obtained using a low-energy ultrasonic dispersion procedure, of a paddy soil in the long-term fertilisation experiment.

Results and discussion

Iron- and Al-bonded OC (Fe/Al-OC) was the dominant fraction and made up 55–70% of the total SOC in the paddy soil, while Ca-bonded OC (Ca-OC) was only a minor fraction (<4%). The Fe/Al-OC was mainly allocated in the MAF (52–67%), indicating that the chemical protection of SOC occurred mostly in the finer particle fractions. Long-term application of organic amendments increased the contents of bulk SOC by 27–34% (P < 0.05), of Fe/Al-OC by 9–16% and of Ca-OC by 35–83% (P < 0.05), whereas the sole application of chemical fertiliser had no significant effects on SOC contents of the paddy soil compared with the treatment without fertiliser inputs. Both amorphous Fe and Al extracted by ammonium oxalate (Feox and Alox) showed significant correlations with Fe/Al-OC (r = 0.52 and 0.78, respectively), but Alox appeared to have a greater influence on C stabilisation in the paddy soil.

Conclusions

These results demonstrated that the dominant chemical binding forms of SOC in the paddy soils were Fe/Al-OC and amorphous Fe/Al oxyhydrates, especially amorphous Al, contributed mostly to the chemical stabilisation of SOC.
  相似文献   

11.
Soil dispersion is a prerequisite process for the separation of metal oxides from bulk soil when magnetic separation is employed to enhance the efficiency for soil treatment. This study examined the stability of goethite, hematite, birnessite, and manganite in common dispersion solutions. The stability of pH in the oxide suspension decreased in the order carbonate (50 mM Na2CO3) > pyrophosphate (50 mM Na4P2O7) > simple alkaline (1 mM NaOH) solutions regardless of the oxides. Dissolution of the four oxides was negligible in the carbonate and the simple alkaline solutions. In the pyrophosphate solutions, however, the oxides were subject to ligand-promoted dissolution by pyrophosphate ion. The extent of dissolution was highest for goethite followed by manganite, hematite, and birnessite. Dissolved Fe and Mn concentrations reached 68.3 and 4.1 ??M for goethite and manganite suspensions, respectively, in 21 days with 5 mM pyrophosphate. Higher pyrophosphate concentrations (up to 150 mM) did not substantially affect the extent of ligand-promoted dissolution due to the limited surface sites of the oxides. The results of this study suggest that the carbonate solution would be more desirable than the simple alkaline or the pyrophosphate solution for soil dispersion in the presence of common Fe or Mn oxides.  相似文献   

12.
The study examined the influence of compost and mineral fertilizer application on the content and stability of soil organic carbon (SOC). Soil samples collected from a long-term field experiment were separated into macroaggregate, microaggregate, and silt + clay fractions by wet-sieving. The experiment involved seven treatments: compost, half-compost N plus half-fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and control. The 18-year application of compost increased SOC by 70.7–121.7%, and mineral fertilizer increased by 5.4–25.5%, with no significant difference between control soil and initial soil. The C mineralization rate (rate per unit dry mass) in microaggregates was 1.52–2.87 mg C kg−1 day−1, significantly lower than in macroaggregate and silt + clay fractions (P < 0.05). Specific C mineralization rate (rate per unit SOC) in silt + clay fraction amounted to 0.48–0.87 mg C g−1 SOC day−1 and was higher than in macroaggregates and microaggregates. Our data indicate that SOC in microaggregates is more stable than in macroaggregate and silt + clay fractions. Compost and mineral fertilizer application increased C mineralization rate in all aggregates compared with control. However, compost application significantly decreased specific C mineralization rate in microaggregate and silt + clay fractions by 2.6–28.2% and 21.9–25.0%, respectively (P < 0.05). By contrast, fertilizer NPK application did not affect specific C mineralization rate in microaggregates but significantly increased that in silt + clay fractions. Carbon sequestration in compost-amended soil was therefore due to improving SOC stability in microaggregate and silt + clay fractions. In contrast, fertilizer NPK application enhanced SOC with low stability in macroaggregate and silt + clay fractions.  相似文献   

13.
Zheng  Taihui  Yang  Jie  Zhang  Jie  Tang  Chongjun  Liao  Kaitao  Liu  Yaojun 《Journal of Soils and Sediments》2019,19(3):1342-1354
Purpose

The main objective of this study was to investigate the effects of abiogenic and biogenic factors, and their interaction, on aggregate stability determined at different particle sizes.

Materials and methods

Soil samples with the same land use pattern were collected and fractioned into five aggregate sizes: 10–15 mm, 5–10 mm, 2–5 mm, 0.25–2 mm, and <?0.25 mm. Contents of iron/aluminum (Fe/Al) oxides, soil organic carbon (SOC), clay, and mean weight diameter (MWD) values for aggregates at different sizes were determined. The respective contributions of these factors were further estimated using path analysis.

Results and discussion

The results showed that SOC contents in A horizon declined with the increase of aggregate size. Highest amorphous iron oxide (Feo) contents were observed in 0.25–2 and 2–5 mm aggregates, but highest amorphous aluminum oxide (Alo) contents were found in 5–10 mm aggregates. Abiotic factors (Fe/Al oxides, clay) played a more important role in determining the formation of <?0.25 mm aggregates, whereas both abiotic and biotic factors play an effective role in stabilizing larger aggregates (0.25–2, 2–5, 5–10, and 10–15 mm). The organo-mineral complexes played a certain role in the stability of soil aggregates, especially the larger aggregates.

Conclusions

We conclude that abiotic and biotic factors play variable roles in soil aggregates at different sizes, and more studies are needed to better assess their respective roles to improve our understanding of soil aggregation.

  相似文献   

14.
Thirty-three samples of Ando soils were extracted by sodium pyrophosphate (O.IM; pH 10) and by dithionite-citrate. The Al, Fe, and C contents of these two extracts offer a means of differentiating the status of humus in relation to Al and Fe in the different horizons. The humus that forms at first in the Al horizon has a very low complexing ability for Al and Fe and little is dissolved by pyrophosphate. The humus evolves with time or pedogenesis into forms that complex Al and Fe released from volcanic ash by weathering, and which are dissolved by pyrophosphate. In the old horizons, the humus further reacts with additional Al and Fe, some of which may be present as hydrous oxides or allophane-like constituents, allophane and imogolite. This reaction probably makes the humus less soluble in pyrophosphate.  相似文献   

15.
Soils that are forming on volcanic parent materials have unique physical and chemical properties and in most cases, on wet and humid climates, are classified as Andisols. The main purpose of this study is to examine if the soils that are forming on volcanic materials under a dry Mediterranean climate, in Nisyros Island (Greece), meet the requirements to be classified as Andisols. Soils from seven sites were sampled and examined for their main physico-chemical properties and selective dissolution analysis. Dithionite–citrate–bicarbonate (DCB) extractable Al and Fe (Áld, Fed), acid ammonium oxalate extractable Al, Fe, and Si (Álo, Feo and Sio), and sodium pyrophosphate extractable Al and Fe (Alp, Fep) were measured. In addition, Al and Si were determined after reaction with hot 0.5 M NaOH, (AlNaOH and SiNaOH) and with Tiron-(C6H4Na2O8S2), (AlT and SiT). P-retention was also measured. The soils are characterised by coarse texture, low organic matter content, low values of cation exchange capacity (CEC), and high pH values. Values of Sio, Alo and Feo are less than 0.022%, 0.09% and 0.35% respectively, highlighting the lack of noncrystalline components. The ratio (Fed–Feo)100/Fed is quite high expressing the degree of crystallisation of free iron oxides. For all samples tested, values of the Alo + 1/2Feo index are extremely low (< 0.24%). High SiNaOH and SiT (arising 2.76% and 2.18% respectively) indicate the presence of silica in amorphous forms. P-retention values are very low (< 12.6%). The results indicated the absence of noncrystalline minerals except for amorphous silica, and do not exhibit andic or vitric soil characteristics to be classified as Andisols.  相似文献   

16.
Abstract

The content of various forms of iron (Fe) (free, reducible, and organic) were determined by selective extraction methods in three wetland profiles between 1993 and 1995 seasons. The result showed that Fe distribution was in the order: dithionite (Fed) > hydroxylamine (FeH) > pyrophosphate (Fep) iron in the three pedons. The hydroxylamine‐Fe constituted between 10–42% (1993), 20–47% (1994), and 10–12% (1995) of the total free Fe oxides. The pyrophosphate‐Fe, on the other hand, constituted between 0.2–1.0% (1993), 19–52% (1994), and 3–9% (1995) of the total free Fe oxides. Dithionite‐Fe (total free iron oxides) content increases with the increasing depth, while hydroxylamine‐Fe decreases, suggesting that larger proportions of Fe oxides are present as crystalline forms in the lower horizons. The active Fe ratios were generally high in the top soils and low in the subsoil. It ranged between 0.03 and 0.69 (1993), 0.05 and 68 (1994), 0.05 and 0.53 (1995) in all pedons. This suggests that poor drainage slowed down soil development. Highly significant correlations (0.1%) were evident between phosphorus (P) and organic carbon; ECEC and base saturation; FeH and active Fe ratio. Significant correlations (1%) were also evident between Fe2+ and organic carbon; P and FeH; ECEC and clay. Furthermore, significant correlations (5%) were also obtained between clay and Fed; pH and Fed; active Fe ratio and P; FeH and clay; active Fe ratio and Fed.  相似文献   

17.
Changes in dispersibility and charge characteristics of two soils with different colloidal properties were investigated after various extracting treatments of free oxides. The soil samples were taken from the upland field in a reclaimed area (highly dispersive) and from the B horizon of an adjacent forest area (physically stable), both of which derived from the same parent material. Special attention was paid to selective extraction of Al and Fe oxides. After the extraction of free oxides by conventional methods such as DCB or oxalate treatment, dispersibility of the soils which always became too high made it difficult to relate the amounts of removed oxides with the changes in dispersibility. Thus, extractions by milder treatments were designed in order to remove varying amounts of free oxides using several organic salt solutions. Among the treatments, citrate and oxalate extracted more Al oxides, followed by tartrate. Dithionite, acetate, and NaCl extracted only trace amounts of Al oxides. This order seemed to be controlled by the stability constants of organo-Al complexes. The changes in dispersibility of the residual soil were related to the amount of extracted Al, especially for the forest soil, but not to Fe or Si. After these treatments, the amount of positive charges of the soil decreased while that of negative charges increased. For instance, the amount of total charges of the forest soil after DCB treatment was 1.5 times larger than that of the non-treated soil at the dispersion pH, which was mainly attributed to the removal of Al oxides. Although the amount of removed Al oxides was relatively small, the changes in dispersibility of the residual forest soil were drastic, indicating that free oxides (mainly Al) removed by milder treatments were the most external, active fractions. This interpretation suggests the practical importance of the release of amorphous sesquioxides in the natural weathering process in preventing the dispersion of potentially dispersive soils.  相似文献   

18.
Agroforestry systems have the potential to increase sequestration of atmospheric carbon dioxide (CO2) as soil organic carbon (SOC) because of the increased rates of organic matter addition and retention. However, few studies have characterized the relative stability of sequestered SOC in soil. We characterized SOC storage in aggregate size and chemical stability classes to estimate the relative stability of SOC pools after the addition of Leucaena-KX2 pruning residues (mulch) from 2006 to 2008 in a shaded coffee agroforestry system in Hawaii. Soil samples were separated by microaggregate isolation, density flotation and dispersion, and acid hydrolysis, resulting in five distinct fractions that differed in relative stability: coarse particulate organic matter (POM), fine POM, microaggregate-protected POM, silt + clay hydrolyzable soil organic matter (SOM), and silt + clay non-hydrolyzable SOM. With mulch addition, the fine POM fraction increased. There was also a shift in the proportion of SOC to more stable silt + clay fractions. In the absence of mulch there was no significant change in SOC fractions. Given that the turnover time of SOC in silt + clay fractions is on the order of decades to centuries, the potential benefits of active shade management and mulching compensate for the loss of C sequestration in tree biomass from pollarding.  相似文献   

19.
Zhu  Meng  Hu  Xuefeng  Tu  Chen  Luo  Yongming  Yang  Ruyi  Zhou  Shoubiao  Cheng  Nannan  Rylott  Elizabeth L. 《Journal of Soils and Sediments》2020,20(2):763-774
Purpose

The mobility of arsenic (As) in soils is fundamentally affected by the clay mineral fraction and its composition. Diphenylarsinic acid (DPAA) is an organoarsenic contaminant derived from chemical warfare agents. Understanding how DPAA interacts with soil clay mineral fractions will enhance understanding of the mobility and transformation of DPAA in the soil-water environment. The objective of this study was to investigate the speciation and sorption structure of DPAA in the clay mineral fractions.

Materials and methods

Twelve soils were collected from nine Chinese cities which known as chemical weapons burial sites and artificially contaminated with DPAA. A sequential extraction procedure (SEP) was employed to elucidate the speciation of DPAA in the clay mineral fractions of soils. Pearson’s correlation analysis was used to derive the relationship between DPAA sorption and the selected physicochemical properties of the clay mineral fractions. Extended X-ray absorption fine structure (EXAFS) LIII-edge As was measured using the beamline BL14W1 at Shanghai Synchrotron Radiation Facility (SSRF) to identify the coordination environment of DPAA in clay mineral fractions.

Results and discussion

The SEP results showed that DPAA predominantly existed as specifically fraction (18.3–52.8%). A considerable amount of DPAA was also released from non-specifically fraction (8.2–46.7%) and the dissolution of amorphous, poorly crystalline, and well-crystallized Fe/Al (hydr)oxides (20.1–46.2%). A combination of Pearson’s correlation analysis and SEP study demonstrated that amorphous and poorly crystalline Fe (hydr)oxides contributed most to DPAA sorption in the clay mineral fractions of soils. The EXAFS results further demonstrated that DPAA formed inner-sphere complexes on Fe (hydr)oxides, with As-Fe distances of 3.18–3.25 Å. It is likely that the steric hindrance caused by phenyl substitution and hence the instability of DPAA/Fe complexes explain why a substantial amount of DPAA presented as weakly bound forms.

Conclusions

DPAA in clay mineral fractions predominantly existed as specifically, amorphous, poorly crystalline, and crystallized Fe/Al (hydr)oxides associated fractions. Amorphous/poorly crystalline Fe rather than total Fe contributed more to DPAA sorption and DPAA formed inner-sphere complexes on Fe (hydr)oxides.

  相似文献   

20.
We used NMR spectroscopy to characterize humid acids extracted from soils that had received long-term application of 2 levels of biosolids to evaluate the soil organic matter (SOM) stability in biosolids-amended soils. The study also quantified fulvic acids (FAs), humic acids (HAs) and Fe/Al oxides. The soils were collected in 2004 from 7 fields, in Fulton County, southwestern Illinois, which received biosolids at a cumulative rate of 0 (control), 554 (low biosolids) and 1,066 (high biosolids) Mg ha−1. The application of biosolids increased both FA and HA contents, but biosolids-amended soil and control soil did not differ in FA/HA ratio. Biosolids application had no effect on water-soluble organic carbon content. Biosolids application increased the presence of Fe/Al in the SOM complex and lowered its C/Fe and C/Al ratios. 13C NMR spectra showed increased alkyl C and decreased aromatic C content in soil HAs with the application of biosolids, and the extent of such changes was higher with high than low biosolids treatment. Under biosolids application, the soil HAs’ C structure shifts from O-alkyl-dominant to alkyl-dominant. Biosolids application does not decrease SOM stability but rather increases the stability of soil humic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号