首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Plant residues, living roots and microbial activity play an important role in aggregate formation and the stabilization of soil organic carbon (SOC), but their impact might differ among soils with different clay mineralogy. We investigated the effect of these organic agents on aggregation and SOC during a 76‐day incubation of 2‐mm sieved soil from an illitic Kastanozem and a kaolinitic Ferralsol, subjected to the following treatments: (i) control (no residue input or plant growth), (ii) residue input, (iii) living plants, and (iv) residue input and living plants. After 46 and 76 days, aggregate size distribution, aggregate‐associated SOC and microbial‐C were measured. In both soils, microbial‐C was less in the control than in the residue and/or plant treatments. After 46 days, new large macroaggregates (> 2000 µm) were formed in the control treatment of the kaolinitic soil, but not of the illitic soil. Control macroaggregates in the kaolinitic soil were formed out of silt and clay particles without accumulating C. Residue input and plant growth had a greater positive effect on macroaggregate formation in the illitic than in the kaolinitic soil. A stronger relation was found between microbial‐C and amount of large macroaggregates in the illitic than in the kaolinitic soil. We conclude that kaolinitic soils can rapidly form macroaggregates independent of biological processes due to physical or electrostatic interactions between the 1:1 clay minerals and oxides. However, biological processes led to stronger organic bonds between the illite compared with the kaolinite clay, resulting in more macroaggregates with long‐term stability in the illitic than in the kaolinitic soil.  相似文献   

2.
《Geoderma》2001,99(1-2):27-49
In the global carbon cycle, soil organic matter (SOM) is a major source/sink of atmospheric carbon. Clay minerals stabilize part of the SOM through mineral–organic matter binding. Stabilization of organic matter is essential for tropical soils. Since the climatic conditions of the tropics favor decomposition of organic matter, tropical soils would be very poor in organic matter without this stabilization process. This research aims at determining the effect of clay mineralogy on the amount and composition of organic matter that is bound to the mineral surface. We focused on organic matter that is associated with kaolinite and smectite. We characterized kaolinite- and smectite-associated SOM in soils from seven countries, employing 13C NMR spectroscopy and Py-GC/MS. The content of carbon in the total clay-size fraction showed no significant difference between kaolinitic and smectitic soils. This suggests that the total amount of organic carbon in the clay-size fraction is independent of the clay mineralogy. We first extracted the clay fraction with NaOH and thereafter with Na4P2O7. About half of the kaolinite-associated SOM was extractable by NaOH. In the smectitic soils, pyrophosphate extracted more organic carbon than did NaOH. The Py-GC/MS and NMR results indicate that kaolinite-associated SOM is enriched in polysaccharide products, while smectite-associated organic matter contains many aromatic compounds. We suggest that different clay minerals use different binding mechanisms to complex SOM. As a result, the composition of clay-associated organic matter would be influenced by the type of clay that is dominantly present in the soil.  相似文献   

3.
C.A. Igwe  M. Zarei  K. Stahr 《CATENA》2009,77(3):232-237
The stability of microaggregates in soils as opposed to its dispersion is a very important soil phenomenon that checks degradation arising from unguided tillage and soil erosion. Ten soils from southeastern Nigeria were sampled from their typical A and B horizons for the study. The aim was to identify the extent of colloidal stability of the soils and the forms of Fe and Al oxides in the soils contributing to their stability. The soils are mostly Ultisols and Inceptisols formed on sandstones and shale parent materials. The soils are low in soil basic cations including the soil organic carbon (SOC). The major clay mineral is kaolinite while the soil is acid in reaction. The various forms of soil Fe and Al oxides are high with the total forms of Fe and Al being most dominant and > dithionite extracted Fe and Al > oxalate extracted Fe and Al > pyrophosphate extracted Fe and Al. The water-dispersible clay and silt (WDC) and (WDSi) which are index of dispersion in most soils are low to medium thus reflecting in the low to medium dispersion ratio (DR). The clay flocculation index (CFI) and aggregated silt + clay (ASC) were moderate to high implying the high potential stability of the soils. Soil organic carbon did not seem to be contributing much to the stability of the microaggregates while oxalate and pyrophosphate extractable Fe (Feox, Fep) and to some extent total Al (Alt) were among the different forms of oxides that act as aggregating agents. We propose here that rather than SOC acting as a disaggregating agent in the soils, it might have acted in association with these oxides in a linkage or bridge such as C–P–OM–C to ensure stability of the soils.  相似文献   

4.
The conversion of tropical forests to agricultural land use is considered as a major cause for a decline in soil organic carbon (SOC) stocks. However, the extent and impact of different land uses on SOC stock development is highly uncertain, especially for tropical Africa due to a lack of reliable data. Interactions of SOC with the soil mineral phase can modify the susceptibility of SOC to become mineralized. Pedogenic Fe‐, Al‐oxides and clay potentially affect SOC stabilization in highly weathered soils typically found in the humid tropics. The aim of our study was to determine the impact of different land uses on SOC stock on such soils. For that purpose, 10 pedologically similar, deeply weathered acidic soils (Acrisols, Alisols) in the Eastern Usambara Mountains (Amani Nature Reserve, NE Tanzania) under contrasting land use were sampled to a depth of 100 cm. The calculated mean SOC stocks were 17.5 kg C m?2, 16.8 kg C m?2, 16.9 kg C m?2, and 20.0 kg C m?2 for the four forests, two tea plantations, three croplands, and one homegarden, respectively. A significant difference in mean SOC stock of 1.3 kg C m?2 was detected between forest and cropland land use for the 0–10 cm depth increment. No further significant impacts of land use on SOC stocks were observed. All soils have a clearly clay‐dominated texture. They are characterized by high content of pedogenic oxides with 29 to 47 g kg?1 measured for the topsoils and 36 to 65 g kg?1 for the subsoils. No positive significant relationship was found between SOC and clay content. Statistically significant positive relationships existed between oxalate‐extractable Fe, Al, and SOC content for cropland soils only. Compared to data published in literature the SOC stocks determined in our study were generally high independent of the established land use. It appears that efficient SOC stabilization mechanisms are counteracting the higher disturbance regime under agricultural land use in these highly weathered tropical soils.  相似文献   

5.
Limited information is available on the changes of surface chemical properties of tropical soils with time during the pedogenesis. Soil samples of three profiles derived from basalts of 10, 1330 and 2290 kilo annum (ka) in age were collected from adjacent locations in a tropical region of Hainan Province, China. The changes in soil surface chemical properties and the mineralogy of the soil clay fraction with time were investigated using ion adsorption, micro-electrophoresis, and X-ray diffraction analysis. The content of 2:1-type clay minerals decreased, while those of kaolinite and gibbsite increased with increasing basalt age and degree of soil development. The content of pedogenic free iron (Fe) oxides and the ratio of free Fe oxides/total Fe oxides increased with soil development stage, while soil poorly crystalline Fe and aluminum (Al) oxides had an opposite trend. The positive surface charge of the soils increased with increasing basalt age and degree of soil development; this was consistent with the change in their contents of free Fe/Al oxides. However, the value of negative surface charge had an opposite behavior. The soil derived from 10-ka-basalt had much more negative charge than soils derived from 1330- and 2290-ka-basalt. Soil net surface charge and zeta potential of the soil clay-fraction decreased with the increase in basalt age. Both net charge–pH curves and zeta potential–pH curves shifted to positive values with increased basalt age and degree of soil development. Increasing age also elevated the point of zero net charge of the soil and the isoelectric point of soil colloids.  相似文献   

6.
欧锦琼  黄伟濠  卢瑛  李博  阳洋  唐贤  贾重建  秦海龙 《土壤》2020,52(6):1290-1297
黏粒矿物影响着土壤理化性质,可指示成土因素特征和土壤发生发育过程/强度,也是中国土壤系统分类的基层单元土族矿物学类型划分的重要依据。本研究选择了广西不同纬度和成土母质的18个代表性水耕人为土的剖面,应用X射线衍射(XRD)方法分析了其典型水耕氧化还原层(Br层)的黏粒矿物组成及其空间分布特征,并确定了其中“黏质”剖面的土族控制层段矿物学类型。结果表明:(1)供试土壤的黏粒矿物主要包括高岭石、伊利石、三水铝石、1.42 nm过渡矿物、蒙脱石和蛭石等,依次分别出现在100%、88.9%、72.2%、61.1%、44.4%和38.9%的剖面中。(2)黏粒矿物组成在纬度空间分布上具有明显规律性特征。随着纬度降低,土壤黏粒中的高岭石增加,伊利石、蒙脱石、1.42nm过渡矿物逐渐减少;纬度>23°N区域内,成土母质对黏粒矿物组成影响明显。(3)纬度23°N是黏粒矿物组成和土族矿物学类型分界线,<23°N区域,黏粒矿物均以高岭石为主,是“黏质”剖面的土族控制层段的主要矿物学类型;>23°N区域,黏粒矿物组成以高岭石、蒙脱石、伊利石或1.42 nm过渡矿物为主,因成土母质不同而异,“黏质”剖面的土族控制层段矿物学类型包括高岭石混合型、混合型和伊利石型。  相似文献   

7.
Different particle-size fractions of soil clays from the semi arid north and the humid tropical south of Cameroon have been characterized with reference to their chemical composition, clay mineralogy and kaolinite crystallinity (Hinckley indices). Selected samples were also examined by Mössbauer spectroscopy. Hinckley indices of kaolinites, which were a major component of the coarse clays, varied considerably (< 0.1 - 0.69) and differed significantly as a function of the geographic and landscape positions of the soil profiles. The Hinckley indices averaged 0.31 in soils from southern Cameroon and 0.30 and 0.07 in soils from high and low landscape positions in northern Cameroon, respectively. Kaolinite crystallinity is therefore considered to vary as a function of transport and/or depositional environment of the kaolinite-containing material. Mössbauer spectra showed that kaolinite-dominated Vertisol coarse clays contained higher relative amounts of Fe2+ than the corresponding fine clay, which is dominated by smectite. It is conceivable that the Fe2+ content of the kaolinite reflects the redox environment of the samples.  相似文献   

8.
The mineralogy of clay fractions separated from deep low-humus deep-gleyic loamy typical agrochernozems on loess-like loams of the Upper Bug and Dniester uplands in the Central Russian loess province of Ukraine consists of complex disordered interstratifications with the segregation of mica- and smectite-type layers (hereafter, smectite phase), tri- and dioctahedral hydromicas, kaolinite, and chlorite. The distribution of the clay fraction is uniform. The proportions of the layered silicates vary significantly within the profile: a decrease in the content of the smectite phase and a relative increase in the content of hydromicas up the soil profile are recorded. In the upper horizons, the contents of kaolinite and chlorite increase, and some amounts of fine quartz, potassium feldspars, and plagioclases are observed. This tendency is observed in agrochernozems developed on the both Upper Bug and Dniester uplands. The differences include the larger amounts of quartz, potassium feldspars, and plagioclases in the clay material of the Upper Bug Upland, while the contents of the smectite phase in the soil profiles of the areas considered are similar. An analogous mineral association is noted in podzolized agrochernozems on loess-like deposits in the Cis-Carpathian region of the Southern Russian loess province developed on the Prut–Dniester and Syan–Dniester uplands. The distribution of particle-size fractions and the mineralogy of the clay fraction indicate the lithogenic heterogeneity of the soil-forming substrate. When the drifts change, the mineral association of the soils developed within the loess-like deposits gives place to minerals dominated by individual smectite with some mica–smectite inter stratifications, hydromicas, and chlorite.  相似文献   

9.
To gain insight into the effect of clay mineralogy on the turnover of organic matter, we analysed the 14C activity of soil organic matter associated with clay in soils dominated by kaolinite and smectite in natural savanna systems in seven countries. Assuming that carbon inputs and outputs are in equilibrium in such soils, we took the 14C age as mean residence time of the organic matter. We corrected the 14C activity for the Suess effect, Bomb effect and difference between date of sampling and date of 14C measurement. Organic matter associated with kaolinite turned over fast (360 years on average). Organic matter associated with smectite turned over relatively slowly, with an average mean residence time for the whole clay-size fraction of 1100 years. Multiple linear regression indicates that clay mineralogy is the main factor explaining differences in the mean residence time of the organic matter extracted.  相似文献   

10.
State‐of‐the‐art predictive models of soil organic carbon (SOC) dynamics associated with land use changes are unable to reflect the diversity of tropical soil types as the knowledge of contrasting site‐specific factors in mediating the response of the SOC pool is sparse. This paper examines the influence of soil type and management on SOC dynamics following the conversion of forests to annual cropping in Ghana. Soil from primary forests and from areas with short (2–7 years) and long (20 years) histories of maize cultivation was sampled from a Vertisol dominated by smectite and Ultisol dominated by kaolinite. Wet sieving was used to separate soil fractions below and above 250 µm. SOC concentrations and δ13C signatures of SOC in soil fractions and bulk soil were determined. SOC stocks were calculated by the commonly used fixed depth approach and by the equivalent soil mass approach. After 20 years of cultivation of the Vertisol, the total SOC content was 40 per cent lower than under forest, and about 95 per cent of the forest‐derived SOC had been lost. After 20 years of cultivation of the Ultisol, total SOC content was only about 20 per cent lower than under forest and merely 30 per cent of the forest‐derived SOC had been lost. Both soil types were managed as they would typically be in small scale farming systems, thus the higher SOC losses and the substantial loss of forest‐derived SOC from the Vertisol question the conventional concept of smectite having a higher SOC‐stabilizing potential than kaolinite under field conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Structural characterization of soil clay minerals often remains limited despite their key influence on soil properties. In soils, complex clay parageneses result from the coexistence of clay species with contrasting particle sizes and crystal chemistry and from the profusion of mixed layers with variable compositions. The present study aimed to characterize the mineralogy and crystal chemistry of the <2 μm fraction along a profile typical of soils from Western Europe and North America (Neo Luvisol). X‐ray diffraction (XRD) patterns were interpreted using: (i) the combination of XRD pattern decomposition and indirect identification from peak positions commonly applied in soil science; and (ii) the multi‐specimen method. This latter approach implies direct XRD profile fitting and has recently led to significant improvements in the structural characterization of clay minerals in diagenetic and hydrothermal environments. In contrast to the usual approach, the multi‐specimen method allowed the complete structural characterization of complex clay parageneses encountered in soils together with the quantitative analysis of their mineralogy. Throughout the profile, the clay paragenesis of the studied Neo Luvisol systematically includes discrete smectite, illite and kaolinite in addition to randomly interstratified illite‐smectite and chlorite‐smectite. Structural characteristics of the different clay minerals, including the composition of mixed layers, did not vary significantly with depth and are thus indicative of the parent material. The relative proportion of the <2 μm fraction increased with increasing depth simultaneously with smectite relative proportion. These results are consistent with the leaching process described for Luvisols in the literature.  相似文献   

12.
Properties and mineralogy of fine fractions separated from agrochernozems forming a three-component noncontrasting soil combination in the Kamennaya Steppe have been characterized. The soil cover consists of zooturbated (Haplic Chernozems (Clayic, Aric, Pachic, Calcaric)), migrational-mycelial (Haplic Chernozems (Clayic, Aric, Pachic)), and clay-illuvial (Luvic Chernozems (Clayic, Aric, Pachic)) agrochernozems. All the soils are deeply quasi-gleyed because of periodical groundwater rise. The mineralogy of the fraction <1μm includes irregular mica–smectite interstratifications, di- and trioctahedral hydromicas, imperfect kaolinite, and magnesium–iron chlorite. The profile distribution of these minerals slightly varies depending on the subtype of spot-forming soils. A uniform distribution of clay minerals is observed in zooturbated agrochernozem; a poorly manifested eluvial–illuvial distribution of the smectite phase is observed in the clay-illuvial agrochernozem. The fractions of fine (1–5 μm) and medium (5–10 μm) silt consist of quartz, micas, potassium feldspars, plagioclases, kaolinite, and chlorite. There is no dominant mineral, because the share of each mineral is lower than 35–45%. The silt fractions differ in the quartz-to-mica ratio. The medium silt fraction contains more quartz, and the fine silt fraction contains more micas.  相似文献   

13.
F. L. WANG  P. M. HUANG 《土壤圈》1997,7(4):289-296
Limited information is available concerning the mineralogy of paddy soils in the southeastern China. Using chemical methods in conjunction with X-ray diffractometry, we studied the mineral composition of three paddy soils: Jinghua (paddy soil on Quaternary red clay), Fuyang (Hapl-percogenic loamy paddy soil), and Shaoxing (gleyic clayey paddy soil). All the soils contained quartz, mica, vermiculite, chlorite and kaolinite, and the distribution of these minerals varied with soil particle size fractions. The clay fraction of the Fuyang and Shaoxing soils also contained smectite. Although X-ray data did not show the presence of smectite in the Jinghua soil, this mineral was identified by the chemical method, suggesting a transitional property of the mineral in the soil. Hydroxy-Al interlayered minerals were also present in the clay fraction. The amount of smectite in the soils was 31.6 (Shaoxing), 16.5 (Fuyang), and 21.4 (Jinghua) g kg-1; for vermiculite it was 33.3 (Shaoxing), 16.5 (Fuyang), and 8.5 (Jinghua) g kg-1. Smectite was only found in the clay fraction. In contrast, amounts of vermiculite in soil particle size fractions were 3.0~11.4 (sand), 2.1~6.0 (coarse silt), 4.6~18.9 (medium silt), 0.9~40.0 (fine silt), and 17.0~108 (clay) g kg-1. The amount of noncrystalline aluminosilicates in the soils in g kg-1 decreased in the order: Shaoxing (2.4) > Jinghua (1.9) > Fuyang (1.7). This study has provided useful mineralogical information that is fundamental in future development of management strategies of the soils.  相似文献   

14.
The nitrogen (N) requirement for paddy rice cultivated in Bangladesh amounts to approximately 80 kg N ha?1. Lack of knowledge on N mineralization from soil organic matter leads farmers to meet this N requirement exclusively by costly mineral fertilizers, which have typically an efficiency of less than 40%. We assessed to what extent routinely analysed soil properties (N and carbon (C), texture, pH, extractable iron (Fe), aluminium (Al) and manganese (Mn), soil mineralogy and length of the annual inundation period) are able to predict net aerobic and anaerobic N mineralization in paddy soils. Both soil N and C correlated positively with the aerobic but not with the anaerobic N mineralization rate. Instead, relative anaerobic N mineralization showed a significant negative correlation with soil N content. We observed no significant influence of clay mineralogy on soil N mineralization. Aerobic but not anaerobic N mineralization increased with length of the annual inundation period while the proportion of the soil N that was mineralized during 120 days decreased. The large clay content of fields that are inundated for 9–10 months annually explains the co‐occurrence of large soil N contents and relatively small N mineralization rates in these fields. However, variation in texture did not explain variation in N mineralization of soils with inundation periods of 3–8 months. Instead, the anaerobic N mineralization correlated positively with Na pyrophosphate‐extractable Fe and negatively with pH (both at P < 0.01). Thus, pH and Fe content, rather than soil N content, clay mineralogy or texture, explained the substantial variation in anaerobic N mineralization of paddy soils in Bangladesh inundated for 3–8 months. It is not known if these relationships between net evolution of ammonium in soil and pH and Fe content are causal or indirect. Elucidation of these mechanisms would greatly further our comprehension of the biochemistry of the young ‘floodplain soils' with relatively low content of pedogenic oxides throughout southeast Asia.  相似文献   

15.
The relationship and mechanisms among weathering processes, cation fluxes, clay mineralogy, organic matter composition and stability were studied in soils developing on basaltic material in southern Italy (Sicily). The soils were transitions between Phaeozems and Vertisols. Intense losses of the elements Na, Ca and Mg were measured indicating that weathering has occurred over a long period of time. The main weathering processes followed the sequence: amphibole, mica, volcanic glass or if ash was the primary source → smectite → interstratified smectite–kaolinite → kaolinite. Kaolinite formation was strongly related to high Al, Mg and Na losses. The good correlation between oxyhydroxides and kaolinite in the soils suggests that (macro)aggregates have formed due to physical or electrostatic interactions between the 1:1 clay minerals and oxides. The stability of organic matter was investigated with a H2O2-treatment that assumes that chemical oxidation mimics the natural oxidative processes. The ratio of C after the H2O2 treatment to the total organic C ranged from 1–28%. No correlation between clay content and organic matter (labile or stable fraction) was found. The refractory organic fraction was enriched in aliphatic compounds and did not greatly interact with the kaolinite, smectite or poorly crystalline Fe or Al phases. A part of this fraction (most probably proteins) was bound to crystalline Fe-oxides. In contrast, the oxidisable fraction showed a strong relationship with poorly crystalline oxyhydroxides and kaolinite. Surprisingly, smectite did not contribute to the stabilisation of any of the organic C fractions. The stabilisation of organic matter in the soils has, therefore, two main mechanisms: 1) the protection of labile (oxidisable with H2O2) organic matter, including also aromatic-rich compounds such as charcoal, by the formation of aggregates with oxyhydroxides and kaolinite and 2) the formation of a refractory fraction enriched in aliphatic compounds.  相似文献   

16.
No‐tillage management can increase soil surface layer organic C (OC) levels compared with conventional tillage. The mechanisms underlying this increase in highly weathered tropical soils, such as Ferralsols, are not well established. The objective of this study was therefore to evaluate the influence of mineralogy on aggregation and the apportionment of OC across aggregate size fractions in a Brazilian Ferralsol under native vegetation (NV) and no‐tillage management for 10 (NT10) or 20 (NT20) yrs. Under native vegetation, soil OC generally increased with increasing aggregate size while, in response to changing management, soil OC increased in the order NT10 (8.8 g/kg) < NT20 (12.7 g/kg) < NV (19.1 g/kg). There were no significant differences in the mineralogy of the clay size fractions among the three treatments, with the notable exception of the CBD‐extractable Fe oxide fraction (FeCBD). The FeCBD fraction comprises various pedogenic Fe(hydr)oxides and increased from NT10 (33.9 g/kg) to NT20 (64.2 g/kg). The OC/FeCBD mass ratio within aggregates increased in the order NT10 <  NT20 <  NV while R2 values for OC and FeCBD occurrence follow this same trend, with the NT10 soil showing a weaker correlation (R2 = 0.178) compared with the NV soil (R2 = 0.533). We propose that formation of organo‐Fe(III) oxide associations is promoted with implementation of NT management and the consequent reduction in macroaggregate turnover. The development of the OC‐Fe(III) oxide associations and their evolution over time within aggregates to more thermodynamically stable entities will strongly influence the long‐term preservation of soil OC.  相似文献   

17.
Soil structure formation is essential to all soil ecosystem functions and services. This study aims to quantify changes in soil structure and microbial activity during and after field incubation and examine the effect of carbon, organic amendment and clay on aggregate characteristics. Five soils dominated by illites, one kaolinitic soil and one smectitic soil were sieved to 2 mm, and each soil was divided into two parts and one part amended with ground rape shoots (7.5 t ha?1) as an organic amendment. Samples were incubated in the field for 20 months with periodic sampling to measure water‐dispersible clay (WDC) and fluorescein diacetate activity (FDA). After incubation, WDC and FDA were measured on air‐dried 1–2‐mm aggregates. Tensile strength was measured on four aggregate classes (1–2, 1–4, 4–8 and 8–16 mm) and results used to assess soil friability and workability. Intact cores were also sampled to determine compressive strength. During incubation, the amount of WDC depended on soil carbon content while the trends correlated with moisture content. Organic amendment only yielded modest decreases (mean of 14% across all sampling times and soils) in WDC, but it was sufficient to stimulate the microbial community (65–100% increase in FDA). Incubation led to significant macroaggregate formation (>2 mm) for all soils. Friability and strength of newly‐formed aggregates were negatively correlated with clay content and carbon content, respectively. Soil workability was best for the kaolinite‐rich soil and poorest for the smectite‐rich soil; for illitic soils, workability increased with increasing organic carbon content. Organic amendment decreased the compression susceptibility of intact, incubated samples at smaller stress values (<200 kPa).  相似文献   

18.

Purpose  

Depositional seals, formed when turbid waters infiltrate into soils, lead to a reduction in soil hydraulic conductivity (HC) and enhance runoff and soil erosion. Since clay size particles constitute a dominant proportion of depositional seals, soil texture and clay mineralogy play a significant role in determining the seal’s hydraulic characteristics. Presence of high molecular weight anionic polyacrylamide (PAM) in suspension flocculates fine sediments, and therefore, its application to the soil surface may modify the characteristics of the depositional seal. The impact of PAM on the latter is expected to be influenced by soil properties. The aim of this study was to elucidate the effects of PAM application on clay flocculation and the HC of depositional seals formed in four soils varying in texture (ranging from loamy sand to clay loam), and diverse proportions of clay mineral constituents (kaolinite, smectite, and vermiculite).  相似文献   

19.
This paper describes the conditions for dispersion and flocculation of clays, and the impact of this process on soils of contrasting textures cropped with rice. Clay seems to be translocated down the profiles and along a topographic sequence. The clays are mixed kaolinite–smectite. The cation exchange capacity of these clays exceeds 20 cmolc kg?1. Both the proportion of smectite and clay content increase with increasing depth and from the top to the lower part of the sequence. The pH ranges from 5 to 8. The aluminium oxide content is small. The soil solutions collected during the rainy season were analysed for Fe2+ and major cations. We calculated the sodium adsorption ratios (SAR) taking into account Fe2+ and compared them with the critical coagulation concentration (CCC) found in a previous study. The Fe2+ contributed to a decrease in the SAR of cropped soils. The comparison between SAR, total electrolyte concentrations and CCC values showed that the dispersible clays are likely (i) to disperse in the abandoned and non‐saline fields, (ii) to flocculate in the saline and uncropped soils as a result of the large salt content and in the cropped soils because of either large salt or Fe2+ content, and (iii) to disperse in the flood water and at the surfaces of abandoned fields under rain. No evidence for ferrolysis was found. The observed contrasting textures and clay mineralogy can be explained by clay translocation controlled by salinity and rice farming.  相似文献   

20.
Potassium (K) deficiency is widespread in crops on highly weathered upland soils under a tropical monsoonal climate. Critical assessment of the forms of K in soils and of the ability of soils to release K for plant uptake is important for the proper management of K in crop production. The relationships between different pools of K were investigated as a function of silt and clay mineralogy for 14 upland Oxisols and 26 upland Ultisols soils from Thailand. Most soils contained no K-minerals in the silt fraction. XRD showed that kaolinite is the dominant clay mineral with variously minor or moderate amounts of illite, hydroxy-Al interlayered vermiculite and smectite present in some soils. For some soils, both conventional and synchrotron XRD were unable to detect illite. Analytical TEM including EFTEM of individual clay crystals showed that clay in the apparently illite-free samples contained very small amounts of illite. Many kaolinite particles appear to contain K which may be present in illite interleaved with kaolinite crystals. A glasshouse K-depletion experiment was conducted to assess the K supply capacity and changes in chemical forms of K and K-minerals using exhaustive K depletion by Guinea grass (Panicum maximum). Potassium deficiency symptoms and mortality of plants occurred on light textured soils, whereas plants survived for six harvests for Oxisols with clay texture, relatively high CEC and higher NH4OAc-K (exchangeable K plus water-soluble K). There is a strong linear relationship of unit slope between NH4OAc-K and cumulative K uptake by plants indicating that NH4OAc-K is a major form of K available to plants. Thus K-bearing minerals contributed little K to plants over the time scale of the experiment and XRD patterns of whole soil samples, silt and clay from soils after cropping mostly showed no change from those for the initial soil. An exception was for a single surface soil clay where a minor amount of smectite was formed from illite by K release to plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号