首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同杂交水稻品种糙米中重金属Cd、Zn、As含量的差异研究   总被引:6,自引:1,他引:5  
为了研究不同品种及类型杂交水稻对重金属Cd、Zn和As吸收累积差异,在湘南某矿区重金属和As复合污染稻田中种植30种不同品种的杂交水稻。研究结果表明:30个杂交水稻中糙米Cd含量为0.28~0.83 mg/kg,Zn含量为24.13~34.16 mg/kg,无机As含量为0.45~0.77 mg/kg。不同基因型杂交水稻品种吸收累积重金属Cd、Zn和无机As有一定的差异性,Cd在不同水稻品种糙米中的积累存在显著差异性,而Zn和无机As在水稻糙米中的累积差异性不显著。不同类型的杂交水稻之间对于重金属的累积也存在差异性,两系杂交水稻和三系杂交水稻糙米中Cd含量存在显著差异(P<0.05),而糙米中Zn和无机As的含量差异性不显著。因此,根据不同基因型杂交水稻对重金属累积的差异性,筛选出重金属低累积水稻品种的方法是可行的。  相似文献   

2.
Cadmium (Cd) is a non-essential element and toxic to plants. To investigate the genetics of Cd tolerance and accumulation in rice, quantitative trait loci (QTL) associated with Cd tolerance and accumulation at the seedling stage were mapped using a doubled haploid (DH) population derived from a cross between a japonica JX17 and an indica ZYQ8. A total of 22 QTLs were found to be associated with shoot height (SH), root length (RL), shoot dry weight (SDW), root dry weight (RDW), total dry weight (TDW) and chlorophyll content (CC), and 10 and 12 QTLs were identified under the control and Cd stress conditions, respectively. For Cd tolerant coefficient (CTC), 6 QTLs were detected on chromosomes 1, 3, 5, 8 and 10. Under Cd stress, 3 QTLs controlling root and shoot Cd concentrations were mapped on chromosome 6 and 7. One QTL for shoot/root rate of Cd concentration was identified on chromosome 3. The results indicated that Cd tolerance and accumulation were quantitatively inherited, and the detected QTLs may be useful for marker-assistant selection (MAS) and identification of the genes controlling Cd tolerance and accumulation in rice.  相似文献   

3.
Grain yield-related traits and grain quality-related traits are important for rice cultivars. The quantitative trait loci (QTLs) involved in controlling the natural variation in these traits among closely related cultivars are still unclear. The present study describes the development of a novel chromosome segment substitution line (CSSL) population derived from a cross between the temperate japonica cultivars Yukihikari and Kirara397, which are grown in Hokkaido, the northernmost limit for rice cultivation. Days to heading, culm length, panicle length, panicle number, brown grain weight per plant, thousand brown grain weight, brown grain length, brown grain width, brown grain thickness, apparent amylose content, and protein content were evaluated. Panicle length, brown grain length and amylose content differed significantly in the parental cultivars. Thirty-five significant changes in the evaluated traits were identified in the CSSLs. A total of 28 QTLs were located on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 and 12. These findings could be useful for breeding rice cultivars in the northernmost limit for rice cultivation.  相似文献   

4.
云南栽培稻生态型矿质元素含量的多样性   总被引:5,自引:0,他引:5  
用ICP-AES测定了新平县相同生态条件下种植653份云南稻资源糙米8种矿质元素含量,并按丁颖的栽培稻生态型对其遗传多样性进行了研究。结果表明,云南水稻改良品种糙米P、Fe和Zn含量比地方稻种分别下降10.53%、14.76%和35.16%,但改良品种特别是粳稻Ca含量比地方种高, 8种矿质元素以Ca的多样性指数最大;糙米P、Ca、Mg、Fe、Zu、Cu和Mn平均含量以粳稻的Mg、Fe和Zn,水稻的P、K和Mg,陆稻的Fe和Zn,糯稻的K和Fe,早稻的Mg和Fe相对较高。8种矿质元素平均遗传多样性指数依次为粳>籼,陆>水,粘>糯,早中稻>晚稻和地方种>改良种,且P>K>Mn>Mg>Cu>Zn>Fe>Ca;其变异系数依次为Fe>Ca>Cu>Zn>Mn>K>Mg >P。  相似文献   

5.
To advance the identification of quantitative trait loci (QTLs) to reduce Cd content in rice (Oryza sativa L.) grains and breed low-Cd cultivars, we developed a novel population consisting of 46 chromosome segment substitution lines (CSSLs) in which donor segments of LAC23, a cultivar reported to have a low grain Cd content, were substituted into the Koshihikari genetic background. The parental cultivars and 32 CSSLs (the minimum set required for whole-genome coverage) were grown in two fields with different natural levels of soil Cd. QTL mapping by single-marker analysis using ANOVA indicated that eight chromosomal regions were associated with grain Cd content and detected a major QTL (qlGCd3) with a high F-test value in both fields (F = 9.19 and 5.60) on the long arm of chromosome 3. The LAC23 allele at qlGCd3 was associated with reduced grain Cd levels and appeared to reduce Cd transport from the shoots to the grains. Fine substitution mapping delimited qlGCd3 to a 3.5-Mbp region. Our results suggest that the low-Cd trait of LAC23 is controlled by multiple QTLs, and qlGCd3 is a promising candidate QTL to reduce the Cd level of rice grain.  相似文献   

6.
选择籽粒Cd、Cr、As、Ni和Pb等重金属含量差异较大的12个晚粳稻基因型,种植于浙江省晚粳稻主产区嘉兴、湖州、杭州、宁波、绍兴等市的6个试点,研究籽粒中5种重金属含量的基因型与环境变异及其稳定性、籽粒和土壤有效态(DTPA提取态)Cd、Cr、As、Ni和Pb等重金属含量之间及与Fe、Zn含量之间的关系,以及土壤pH对籽粒重金属积累的影响。结果表明,环境、基因型及其互作效应对籽粒重金属含量的效应均达极显著水平,表明筛选和选育籽粒重金属含量低的品种以及通过农艺措施减少籽粒重金属含量是可能的。同时,籽粒中这5种重金属含量的稳定性因环境、基因型而有较大差异,且亦因重金属种类而异。因此,为降低籽粒重金属含量,应针对特定重金属污染的环境进行基因型选择,并同时考虑基因型籽粒重金属含量的稳定性。土壤pH不仅影响土壤重金属有效性及水稻籽粒中重金属积累量,还影响籽粒重金属积累的基因型与环境互作效应(即积累稳定性)。此外,土壤中一些重金属常发生复合污染,如Cd和Cr、As或Ni,Cr和As,Pb和As间表现为协同消长,Cd含量较高的稻米往往As和Pb含量也高,Cr和Ni含量以及As和Pb含量之间也呈正相关。  相似文献   

7.
Chromium contamination in soil has become a severe threat to crop production and food safety. The experiment was conducted using a rice DH population to detect the QTLs associated with Cr tolerance. Seventeen putative QTLs associated with growth traits included three additive loci and fourteen epistatic loci. These loci were distributed on 11 rice chromosomes, and their contribution to the phenotypic variation ranged from 2.44 to 10.08%. Two QTLs located at the similar genetic region on chromosome ten were associated with shoot Cr concentration and translocation from roots to shoots, respectively; and they accounted for 11.65 and 11.22% of the phenotypic variation. In addition, six QTLs related to Zn concentration and translocation was found on chromosomes 1, 2, 4, 5, 7 and 12. Meanwhile epistatic effect existed in the two additive QTLs of qRZC1 and qRZC7. Most of QTLs controlling Zn concentration had small genotypic variance and qSRZ4 related to Zn translocation showed growth condition-dependent expression.  相似文献   

8.
The demand for superior grain quality represents a major issue in rice (Oryza sativa L.) breeding. To study the genetic basis of rice grain quality, including traits specifying grain dimension and percentage of grains with chalkiness, quantitative genetic analysis was conducted in a population of 37 introgression lines (ILs) of indica elite variety Habataki in the background of japonica cultivar Sasanishiki across two different environments. The ILs showed transgressive segregation for all of the investigated traits, including percentage of grains with chalkiness, brown grain length, width, thickness, length/width ratio, length/thickness ratio, volume and 1,000-brown grain weight, the result indicated that these rice grain quality traits were polygenic phenomenon. Fifty-four QTLs were identified on eleven chromosomes, and 44 QTLs were associated with more than one trait, as a cause of the observed phenotypic correlations between different traits. Five stable QTLs, namely QPGWC.NH-1.1, QPGWC.NH-1.2, QGW.NH-3.1, QLW.NH-7.1 and QGV.NH-8.2, were identified in this study. This study provides useful information for marker-aided improvement of grain quality (grain dimension and percentage of grains with chalkiness) in rice; moreover, ILs carrying these QTLs constitute good candidates for future fine mapping and positional cloning projects.  相似文献   

9.
Heavy metal pollution being a potential threat to agriculture raising rice cultivars with heavy metal tolerance is a promising strategy for remediation of heavy metal polluted agricultural lands. We present here a comprehensive study describing the differences in physiological and biochemical responses of 12 prominent high-yielding rice cultivars to increasing ZnSO4 concentrations (0, 2, 6, and 10 mM) and CdCl2 concentrations (0, 1, 2, and 3 mM). Even though Zinc (Zn) is an essential element required for the normal growth and development process of plants, a higher concentration of Zn has an antagonistic effect. Cadmium (Cd) is detrimental to plants and is found in soils contaminated with heavy metals. The effects of Zn and Cd on rice seedlings were a reduction in shoot length, greater chlorophyll and carotenoid loss, higher malondialdehyde content, proline accumulation, and an increased level of sugar and amino acids when treated with CdCl2 and ZnSO4. The CdCl2 and ZnSO4 stress-induced biochemical changes displayed major differences in the 12 rice cultivars in terms of tolerance to Zn and Cd toxicity. Our data provides evidence that the cultivar Varsha showed the highest tolerance and cultivar JY showed the least tolerance towards Cd and Zn toxicity.  相似文献   

10.
旨在探讨在土壤镉(Cd)污染条件下,能否通过合适的灌溉方式改善稻米品质并减少Cd在籽粒中的分配。盆栽扬粳9538(粳稻)和扬稻6号(籼稻),于移栽前加Cd 150 mg kg-1(Cd处理),以未加Cd为对照(CK)。自抽穗后7 d至成熟设置3种灌溉方式,即保持水层(WW);轻干-湿交替灌溉(MD,土壤落干至土壤水势为-20 kPa时复水);重干-湿交替灌溉(SD,土壤落干至土壤水势为-40 kPa时复水)。结果表明,在土壤Cd浓度相同条件下,与WW比较,MD显著增加结实率、千粒重、产量、稻米的出糙率、精米率和整精米率,显著降低垩白度,SD的结果则相反。Cd处理对结实率、千粒重和稻米品质各指标无显著影响。在Cd处理条件下,与WW相比,MD和SD显著增加Cd在根系的浓度和分配比例,降低Cd在茎叶的浓度和在籽粒的分配比例。籽粒和精米中Cd浓度,SD显著高于WW,MD与WW无显著差异。Cd在精米的分配比例则SD显著低于MD和WW。两品种结果趋势一致。说明结实期轻干-湿交替灌溉可以增加产量、改善稻米的加工和外观品质,并可不增加甚至降低Cd在籽粒中的浓度及分配比例。从根系活性、叶片光合特性以及Cd的转运等方面分析了在不同灌溉方式下产量、品质及不同器官Cd浓度与分配差异的原因。  相似文献   

11.
Genotyping by sequencing (GBS) has been applied to identify genetic markers in crops for trait association and breeding purposes. Here, we applied GBS technology to study a natural population of 270 Indica rice strains, which resulted in identification of 79,545 genomewide single nucleotide polymorphisms. Using these SNPs, we found the close relationship between the 270 Indica rice strains. Furthermore, we tested the feasibility of using these 270 Indica strains in studying important rice traits by analysing the cadmium and other metal accumulation of these strains and correlating the traits with genetic markers. We identified 32 SNPs to be associated with cadmium (Cd) accumulation, explaining 61.25% of the Cd concentration variances in grains. The genetic markers provided here are valuable resources for future rice studies, and further characterization of the candidate loci identified in this study can also aid the development of low Cd‐accumulating rice varieties.  相似文献   

12.
Yield is a complex trait. To improve it, the accumulation of the favourable alleles of valuable genes is required for each yield‐related trait. In this study, we used two high‐yielding rice cultivars developed in Japan, indica‐type ‘Takanari’ and japonica‐type ‘Momiroman’, for a genetic analysis of the sink capacity‐related traits. An F2 population showed transgressive segregation for the number of spikelets per panicle. Quantitative trait locus (QTL) analysis detected four QTLs for the trait. Two of the QTLs were most likely identical to previously cloned GN1a and APO1, and their Takanari alleles had positive effects. The Momiroman alleles of the other two QTLs had positive effects, and one of these QTLs was most likely identical to SPIKE/GPS. The QTL on the long arm of chromosome 3 appeared to be novel; it clustered with QTLs for grain length and days‐to‐heading. Substitution mapping revealed that the close linkage of QTLs caused the clustering. These results suggest that the combination of the favourable alleles of detected QTLs could lead to greater sink capacity than that of the parental cultivars.  相似文献   

13.
Grain size is a main component of rice appearance quality. In this study, we performed the SSR mapping of quantitative trait loci (QTLs) controlling grain size (grain length and breadth) and shape (length/breadth ratio) using an F2 population of a cross between two Iranian cultivars, Domsephid and Gerdeh, comprising of 192 individuals. A linkage map with 88 markers was constructed, which covered 1367.9 cM of the rice genome with an average distance of 18 cM between markers. Interval mapping procedure was used to identify the QTLs controlling three grain traits, and QTLs detected were further confirmed using composite interval mapping. A total of 11 intervals carrying 18 QTLs for three traits were identifed, that included five QTLs for grain length, seven QTLs for grain breadth, and six QTLs for grain shape. A major QTL for grain length was detected on chromosome 3, that explained 19.3% of the phenotypic variation. Two major QTLs for grain breadth were mapped on chromosomes 3 and 8, which explained 34.1% and 20% of the phenotypic variation, respectively. Another two major QTLs were identified for grain shape on chromosomes 3 and 8, which accounted for 27.1% and 20.5% of the phenotypic variance, respectively. The two QTLs that were mapped for grain shape coincided with the major QTLs detected for grain length and grain breadth. Intrestingly, gs2 QTL specific to grain shape was detected on chromosome 2 that explained 15% of the phenotypic variation.  相似文献   

14.
Genotypic variation of cadmium accumulation and distribution in rice   总被引:2,自引:0,他引:2  
Cadmium (Cd) is absorbed by rice root and transferred into the other rice organs including grain. A solution-culture experiment was conducted to investigate the absorption and distribution of Cd supplied at different growth stages of rice. Two rice cultivars, a japonica ‘Chucheong’ and a tongil-type ‘Milyang23’ that exhibit high and low ability of Cd absorption by root and accumulation in grain were grown in culture solution and subjected to 2 ppm CdCl2 treatment for 2 weeks at four different growth stages: before panicle initiation stage (BPI), after panicle initiation stage (API), early ripening stage (ER), and mid-ripening stage (MR). Cd concentration and accumulation in rice organs were measured at harvest. The two rice cultivars accumulated two to three times greater amounts of Cd in grain in the two Cd treatments before heading (BPI and API treatments) than in the Cd treatment after heading (ER and MR treatment). The higher grain Cd accumulation in BPI and API treatments was not attributed to the higher Cd uptake but to the higher translocation from root to shoot and the higher redistribution from shoot to grain than ER and MR treatments These results imply that the remobilization of Cd through phloem during leaf senescence is the major process for Cd accumulation in rice grain rather than direct transport of absorbed Cd through the xylem-phloem transfer to grain. ‘Milyang23’ absorbed significantly smaller amount of Cd than ‘Chucheong’. However, ‘Milyang23’ accumulated more than a three times larger amount of Cd in grain compared to ‘Chucheong’ as the former exhibited the higher root-shoot translocation and shoot-grain remobilization as well. It indicates that the greater Cd translocation from root to shoot and subsequent higher Cd remobilization from shoot to grain, not the higher absorption ability, have led to the higher Cd accumulation and concentration in grain of ‘Milyang23’.  相似文献   

15.
不同基因型水稻镉积累动态差异分析   总被引:5,自引:1,他引:4  
探讨镉(Cd)在籽粒Cd积累量差异较大的2个常规籼型水稻品种‘黄华占’(Cd低积累)和IR68144(Cd高积累)各器官中的分布差异和积累动态,分析了在大田栽培条件下2个品种全生育期和生殖生长期各组织器官的Cd积累动态过程。结果表明:成熟期两品种植株的大部分Cd都集中于根系和茎部,IR68144各器官的Cd含量都高于‘黄华占’。在整个生育期中,‘黄华占’根和茎中的Cd含量都呈缓慢上升趋势,IR68144根系Cd含量先上升后下降,最后于灌浆后期快速上升,其茎部Cd含量则先下降后上升;两品种叶片Cd含量在抽穗前变化趋势表现一直,而在抽穗后却截然相反。抽穗后,‘黄华占’剑叶和穗轴Cd含量先持续上升,后于黄熟期有所下降,而IR68144的剑叶和穗轴都呈持续上升趋势,两品种的颖壳和糙米的Cd含量也都整体上升,且同品种的两器官表现趋于一致。籽粒发育过程中,两品种糙米Cd积累量都不断地提高,但它们超过一半的Cd由抽穗后的第21~28天积累完成。  相似文献   

16.
Panicle length (PL), an important yield‐related trait, strongly affects yield components, such as grain number, grain density and rice quality. More than 200 panicle length quantitative trait loci (PL QTLs) are identified, but only a small number are applied in rice breeding. In this study, we performed QTL analysis for PL using 42 single‐segment substitution lines (SSSLs) derived from nine donors in the genetic background of HJX74. Fourteen QTLs and five heterosis QTLs (HQTLs) for PL were recognised. Three QTLs and four HQTLs acted positively, and the other eleven QTLs and one HQTL acted negatively. By scanning the single heterozygous background region of the F2 population with large‐genetic‐effect SSSLs, we mapped PL loci qPL6‐2 and qPL7‐1 to different locations on chromosomes 6 and 7, respectively, in three consecutive years of independent trials. The genetic effects of these QTLs were further assessed. qPL6‐2 demonstrated the most positive additive effect (QTL), whereas qPL7‐1 achieved the most positive dominant effect (HQTL) for PL. These results indicated that the pyramiding of PL QTLs might increase grain yield and facilitate the application of the beneficial allele in hybrid rice breeding.  相似文献   

17.
The aims of these field experiments were to investigate the effectiveness of soil application of rubber tire ash in comparison with soil and foliar applications of zinc (Zn) sulfate to increase Zn and decrease cadmium (Cd) concentrations in wheat grain. A two-year field experiment was conducted during the 2007–2008 and 2007–2008 growing seasons at Isfahan research field, Iran. Ten different Zn-efficiency bread wheat cultivars (Triticum aestivum L.) commonly cultivated in different parts of Iran were subjected to no Zn fertilizer addition (control), soil application of 40 kg ha−1 ZnSO4, soil application of 100 (for the first year) and 250 (for the second year) kg ha−1 waste rubber tire ash, foliar application of Zn at the mid tillering stage, and foliar application of Zn at the early anthesis stage. In the foliar application, ZnSO4 was sprayed at a rate of 0.66 kg Zn/ha. Foliar spray of zinc sulfate at early anthesis, in general, had no significant effect on the yield and grain Cd while significantly increased grain Zn concentrations of most cultivars. On average, the foliar Zn treatment at the mid tillering stage (0.66 kg Zn/ha), decreased the mean grain Cd concentration from 0.032 mg kg−1 in the control treatment to 0.024 mg kg−1. While the grain Zn concentrations of some cultivars increased with soil application of Zn sulfate, they were not affected or even decreased in other cultivars. For most studied wheat cultivars, pre-planting application of rubber tire ash in soil resulted in a significant decrease of grain Cd concentrations. The results show that the effectiveness of soil and foliar application of Zn on yield and grain Zn and Cd concentrations greatly depends on the cultivar. The currently recommended rates of soil applications of Zn to ameliorate Zn deficiency are sufficient to increase grain Zn and decrease grain Cd concentrations in some wheat cultivars, while they do not in the others. In this study, soil application of 250 kg rubber tire ash/ha and foliar spray of 0.66 kg Zn/ha at tillering stage were the most effective treatments to ameliorate Zn deficiency and to increase Zn and decrease Cd concentration in grains of most wheat cultivars.  相似文献   

18.
Cadmium (Cd) is absorbed by rice root and transferred into the other rice organs including grain. A solution-culture experiment was conducted to investigate the absorption and distribution of Cd supplied at different growth stages of rice. Two rice cultivars, a japonica ‘Chucheong’ and a tongil-type ‘Milyang23’ that exhibit high and low ability of Cd absorption by root and accumulation in grain were grown in culture solution and subjected to 2 ppm CdCl2 treatment for 2 weeks at four different growth stages: before panicle initiation stage (BPI), after panicle initiation stage (API), early ripening stage (ER), and mid-ripening stage (MR). Cd concentration and accumulation in rice organs were measured at harvest. The two rice cultivars accumulated two to three times greater amounts of Cd in grain in the two Cd treatments before heading (BPI and API treatments) than in the Cd treatment after heading (ER and MR treatment). The higher grain Cd accumulation in BPI and API treatments was not attributed to the higher Cd uptake but to the higher translocation from root to shoot and the higher redistribution from shoot to grain than ER and MR treatments These results imply that the remobilization of Cd through phloem during leaf senescence is the major process for Cd accumulation in rice grain rather than direct transport of absorbed Cd through the xylem-phloem transfer to grain. ‘Milyang23’ absorbed significantly smaller amount of Cd than ‘Chucheong’. However, ‘Milyang23’ accumulated more than a three times larger amount of Cd in grain compared to ‘Chucheong’ as the former exhibited the higher root-shoot translocation and shoot-grain remobilization as well. It indicates that the greater Cd translocation from root to shoot and subsequent higher Cd remobilization from shoot to grain, not the higher absorption ability, have led to the higher Cd accumulation and concentration in grain of ‘Milyang23’.  相似文献   

19.
多环境下稻米粒重的QTL定位   总被引:2,自引:0,他引:2  
以粳稻Asominori为遗传背景的染色体片段置换系(CSSLs)群体为材料,利用基于性状-标记多元回归分析方法对稻谷粒重和精米粒重进行多环境的QTL定位。结果在5个环境共检测到6个粒重相关QTL,分布于第1、6、7和8染色体上,对表型变异的贡献率介于13%~35%;其中控制精米粒重的qMRW-1a和稻谷粒重的qPRW-1在不同环境中均能稳定表达,且均位于第1染色体RFLP标记XNpb113附近,该基因座还同时控制着粒宽。qMRW-1a和qPRW-1共同对应的置换系AIS8和AIS11与Asominori 的粒重差异在不同环境中均显著(P < 0.05),表明该QTL的等位基因在不同环境中效应显著。比较发现该QTL在不同遗传群体中均能被重复检测到,且与蔗糖磷酸合酶基因(SPS)位置一致,推测该QTL与淀粉合成代谢有关。qMRW-1a 和qPRW-1在不同环境条件和遗传背景中表达,因此可用于进一步的精细定位研究。  相似文献   

20.
X. J. Ge    Y. Z. Xing    C. G. Xu  Y. Q. He 《Plant Breeding》2005,124(2):121-126
The traits of elongation, volume expansion, and water absorption are very important in determining the quality of cooked rice grains. In this study, quantitative trait loci (QTL) analysis of these traits was performed using a recombinant inbred population derived from a cross between two indica cultivars, ‘Zhenshan 97’ and ‘Minghui 63 ,’ which are the parents of the most widely grown hybrid rice in China. Using a linkage map based on 221 molecular marker loci covering a total of 1796 cM, a total of 33 QTLs were identified for the nine traits tested. QTLs were detected on chromosomes 1– 3 , 5– 9 , and 11 , respectively. The QTLs identified included three for cooked rice grain length elongation (chromosomes 2 , 6 , and 11), six for width expansion (chromosomes 1‐ 3 , 6 , 9 , and 11) and two for water absorption (chromosomes 2 and 6). Interestingly, a single QTL located near the wx gene on chromosome 6 seemed to influence all the traits tested for the cooked rice quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号