首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
高粱株型性状数量遗传分析   总被引:3,自引:0,他引:3  
株型性状的遗传分析对高粱育种的理论、方法和策略至关重要。通过对高粱株型性状的遗传规律和基因的作用方式进行分析,旨在为田间选择稳定遗传的优良株型性状提供理论基础。以粒用高粱引-20和忻梁52杂交所构建的F2遗传群体为试验材料,利用植物数量性状主+多基因混合遗传模型分析方法,对高粱叶夹角、株高、穗长、平均茎节长度、叶长及叶宽6个株型性状进行遗传分析。结果表明,高粱叶夹角遗传符合B_1模型,即加性-显性-上位性的混合遗传模型,其主基因遗传率为70.15%;株高遗传符合B_2模型,即加性-显性混合遗传模型,主基因遗传率为74.26%;穗长遗传符合B_6模型,即等显性遗传模型,主基因遗传率为58.67%;平均茎节长度遗传符合A_1模型,即加性-显性的混合遗传模型,主基因遗传率为68.69%;叶长遗传符合B_1模型,即加性-显性-上位性的混合遗传模型,主基因遗传率为47.92%;叶宽遗传符合B_6模型,即等显性遗传模型,主基因遗传率为61.60%。叶夹角和株高是构成高粱株型的主要性状,并具有较高的遗传力,在早期时进行选择,容易获得具有理想株型的育种材料。  相似文献   

2.
分蘖作为饲用高粱的一项重要农艺性状,受基因和环境的共同控制,对饲用高粱的产量和品质有重要影响。为进一步探究饲用高粱分蘖的遗传机制以及分蘖对饲用高粱的形态和产量的影响,本试验以分蘖多的品种‘TS-185’和分蘖少的品种‘忻梁-52’为亲本配置杂交组合,得到F2代,对分蘖数、茎粗、茎节数以及具有形态差异的性状如主茎和分蘖的叶片数、株高、穗长、穗重、茎秆鲜重进行统计,计算不同性状在主茎和分蘖间的相对差异值,并利用主基因-多基因遗传模型进行遗传分析。研究结果表明,株高、叶片数、穗长、穗重、茎秆鲜重在主茎和分蘖之间都存在极显著正相关。分蘖数、主茎和分蘖株高相对差异、穗长相对差异、穗重相对差异4个性状为两对主基因控制加性-显性-上位性混合遗传模型,广义遗传率分别是36.43%、82.71%、63.07%和85.06%,后3个性状能够在后代中稳定遗传,可在育种早代进行选择。茎粗、茎节数、主茎和分蘖叶片数相对差异,茎秆鲜重相对差异在本试验中表现为微效多基因控制的性状,非主基因控制。本研究对饲用高粱分蘖的遗传效应和分蘖对饲用高粱形态学差异的影响具有指导意义。  相似文献   

3.
本研究选用蓖麻YC2×YF1高、矮秆组合的2组6世代群体(P1、P2、F1、B1、B2和F2),对株高性状进行了主基因+多基因混合遗传模型分析。结果表明,蓖麻株高受1对主基因和多基因共同控制。2组群体在B1、B2和F2三个分离世代中主基因遗传率分别为37.05%/49.57%、30.51%/34.48%和43.98%/43.64%;主穗位高和主茎节数均受2对主基因和多基因共同控制,且主基因的互作效应显性效应加性效应。3个分离世代中,2组群体主穗位高主基因遗传率分别为67.91%/92.72%、86.89%/92.13%和60.18%/66.87%,主茎节数主基因遗传率分别为91.83%/91.50%、35.22%/63.37%和85.76%/94.58%。主茎节长由多基因控制,遗传率分别为47.64%/47.64%、38.87%/38.87%和25.25%/52.71%。以上遗传模式决定了蓖麻杂种后代株高、主穗位高和主茎节长的正向超亲遗传,而主茎节数则倾向于低值亲本。因此,主穗位高和主茎节数可以作为株高的早期间接选择指标。  相似文献   

4.
烟草主要农艺性状的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
《分子植物育种》2021,19(19):6438-6447
本研究以烤烟品种‘云烟97’和‘变异云烟97’为亲本,分别构建P1、P2、F1和F24个世代遗传群体,利用植物数量性状主基因+多基因混合遗传模型方法对烟草的株高、节距、叶数和茎围进行遗传及相关分析。结果表明,株高分别与节距、叶数间呈极显著正相关,与茎围间呈显著正相关;而节距与叶数间则呈现极显著负相关。株高、节距和叶数3个性状具有相同的最优遗传模型,即2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(MX2-ADI-AD),其主基因遗传率分别为95.225 8%、94.285 4%和99.177 1%,多基因遗传率分别为4.774 2%、5.568 4%和0.822 9%;茎围性状符合2对加性-显性主基因+加性-显性多基因混合最优遗传模型(MX2-AD-AD),其主基因和多基因遗传率分别为90.314 6%和9.685 4%。上述性状均受主基因+多基因混合遗传模型控制,主基因遗传率均高达90%以上且远大于多基因遗传率,受环境影响可以忽略。因此,在烟草高产育种过程中针对上述农艺性状的定向选择宜在早期世代进行。  相似文献   

5.
春小麦穗部性状的主基因+多基因遗传分析   总被引:1,自引:1,他引:0  
穗部性状直接影响着作物的经济产量,研究春小麦穗部性状的遗传组成,为遗传育种中通过进一步改良穗部性状提高产量提供参考和策略。以‘宁春4号’和‘Drysdale’及其构建的F2群体为材料,采用P1、P2、F1、F2四世代联合分离分析法研究了春小麦几个穗部性状:穗长、结实小穗数、不实小穗数、穗粒数的遗传模型。结果表明:穗长符合加性-显性-上位性多基因混合遗传模型,无主基因存在;结实小穗数由2对等加性主基因+加性-显性多基因控制;不实小穗数符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型;穗粒数符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。  相似文献   

6.
玉米农艺性状是影响植株个体发育状况及群体生产效能的重要因素。本试验以甜玉米T8(♀)和T33(♂)为亲本,组配杂交组合,F2代乳熟期调查各单株主要农艺性状,用“主基因+多基因混合遗传模型”分析方法进行遗传模型分析。结果表明,甜玉米茎粗的最佳遗传模型符合A-3模型,即2对完全显性基因控制;穗位高的最适遗传模型为B-6,即2对等显性基因遗传;穗位叶夹角最适遗传模型为B-1,即2对加性-显性-上位性主基因遗传,两对基因都以加性效应为主;雄穗分枝数最适遗传模型为B-4,即2对等加性基因控制,以主基因遗传为主。本试验结果可为甜玉米育种实践及农艺性状遗传改良和选择提供一定的参考。  相似文献   

7.
柄蔓夹角是甜瓜株型重要性状之一,通过对甜瓜柄蔓夹角的遗传特性进行研究,以期为甜瓜株型改良育种提供理论基础。本研究以柄蔓夹角小的紧凑型甜瓜材料B103和柄蔓夹角大的疏散型甜瓜材料B297为亲本,构建四世代群体(P1、P2、F1和F2),应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对甜瓜柄蔓夹角进行遗传分析。两年的研究结果显示,甜瓜柄蔓夹角性状表现为数量性状,不同年份柄蔓夹角的最适遗传模型均为E-1模型,即柄蔓夹角由两对加性-显性-上位性主基因+加性-显性多基因控制。2015年秋,F2分离世代主基因遗传率是72.28%,多基因遗传率是0;2016年春,F2分离世代主基因遗传率为52.06%,多基因遗传率为0。结果表明甜瓜柄蔓夹角的遗传符合两对加性-显性-上位性主基因+加性-显性多基因遗传模型(E-1),这一性状由主基因控制,同时受环境影响。  相似文献   

8.
本文以黄淮地区6个夏大豆品种(系)通过双列杂交保留下来的F_3代材料,研究大豆6个形态性状的遗传特性.结果表明,株高、有效分枝数、主茎节数、主茎荚丛数和茎粗5个性状均符合加性—显性模型.而底荚高则存在非等位基因之间的互作效应.株高、有效分枝数、主茎节数和主茎荚丛数为部分显性,茎粗存在超显性现象.主茎节数和主茎荚丛数可能有相似的遗传特点.豫豆8号大豆带有较多的控制株高的显性基因,油84-30大豆带有较多的控制分枝和茎粗的显性基因,而尖顶大白角大豆控制主茎节数和美丛数的显性基因较多.  相似文献   

9.
用YC2(高杆)×YF1(矮杆)和YC1(高杆)×YF1(矮杆)组合衍生的2个F2代群体, 对蓖麻株高性状进行相关、回归和QTL定位分析。结果表明, 株高与主穗位高、主茎节长和主茎茎粗之间显著正相关, 但与主茎节数不相关;主穗位高与主茎节数、主茎节长和主茎茎粗之间显著正相关;主茎节数与主茎节长之间显著负相关。利用QTLNetwork 2.0软件在YC2×YF1的F2群体中检测到株高、主穗位高、主茎节数、主茎节长和主茎茎粗的5、4、6、3和2个QTL, 分别解释了45.9%、45.3%、66.1%、55.4%和12.6%的总变异。在YC1×YF1的F2群体中检测到3、4、5、1和2个上述5性状的QTL, 分别解释了26.0%、25.5%、35.4%、37.4%和7.6%的总变异。证明QTL间的“一因多效”和连锁是株高、主穗位高和主茎节长之间高度相关的遗传基础, 加性效应是株高、主穗位高和主茎节长的主要遗传组分, 互作效应是主茎节数和主茎茎粗的主要遗传组分。建议育种上将主穗位高和主茎节长作为株高早期选择和预测的间接指标,并将多节数和短节间作为高产育种的主攻方向。  相似文献   

10.
柱头性状是影响水稻不育系异交繁殖和杂交水稻制种产量的重要性状。为创制长柱头、高外露率的水稻温敏核不育系提供遗传信息,调查了短柱头、低外露率的粳型光温敏核不育系7001S和长柱头、高外露率的温敏核不育系紫泰S及其杂交、自交获得的F_1、F_2群体(350个株系)和F2:3群体(320个株系)的4个柱头性状,分析了4个性状之间的相关性,并运用主基因+多基因混合遗传模型,对2个世代4个性状进行了遗传分析。结果表明,4个柱头性状间均表现出极显著正相关,相关系数介于0.262和0.895之间。柱头长度、花柱长度、柱头和花柱总长度(以下简称柱花总长度)均表现出受2对主效基因和微效基因共同控制,除F_2群体中柱花总长度的2对主基因表现为等加性效应和等显性效应外,其余均表现为加性-显性-上位性效应,3个性状均表现出以主基因间的上位性效应为主;F_2群体柱头外露率受2对加性-显性-上位性主基因+多基因控制,而F2:3群体则表现为受1对加性-显性主基因+多基因控制,以主基因间的加性效应为主。2个世代中的4个柱头性状均以主基因遗传为主。  相似文献   

11.
本文提出利用亲本P_1和P_2、杂种F_1,F_2和F_(2∶3)五世代联合分析数量性状主基因和多基因遗传的统计方法,共建立可供选择的单基因遗传、多基因遗传以及一个主基因 多基因混合遗传三类11个遗传模型;AIC信息准则用于选择最适遗传模型,通过适合性检验对所选择的遗传模型做进一步检验;以D类模型为例,给出参数估计EM过程的一般步骤。以邳县天鹅蛋(P_1)和1138—2(P_2)杂交组合为例,分析了大豆抗豆秆黑潜蝇性状的遗传,发现该性状符合主基因 多基因混合遗传模式,主基因的加显性效应分别为-1.86和-1.64,F_2世代主基因的遗传率为43.84%,F_(2∶3)家系世代主基因的遗传率为88.59%,F_2群体的抗感分界线为11≤x≤12,F_(2∶3)群体的抗感分界线为10.6≤x≤11.0。  相似文献   

12.
为研究水分胁迫对小麦幼苗部分农艺性状的影响,分析这些性状与干旱胁迫的关系。以‘青麦6号’和‘烟农24’杂交形成的F2:3群体为材料,采用主基因+多基因混合遗传模型对其进行遗传分析。水、旱2种条件下,根长和根鲜重均为1对加性-显性效应主基因模型;茎鲜重、茎干重、根干重、根茎鲜重比和根茎干重比的最适遗传模型不同。干旱胁迫条件下,茎鲜重主基因遗传率为37%,茎干重、根长、根鲜重、根干重、根茎鲜重比及根茎干重比主基因遗传率分别是51%、81%、74%、56%、50%、68%。茎鲜重、茎干重、根干重等性状,尽管检测到主基因,但在水旱条件下遗传模型不同,可进一步研究其遗传规律。  相似文献   

13.
为探明杂交水稻株高和每穗颖花数的遗传规律,以2个大穗高秆籼稻恢复系WHR2和DSBao、1个矮秆籼稻恢复系矮93为试验材料,配制2个杂交组合WHR2×矮93、DSBao×矮93,由此产生的P_1、P_2、F_1、B_1、B_2和F_2 6个世代群体,运用主基因+多基因混合遗传模型,对株高和每穗颖花数2个性状进行了遗传分析。结果表明,株高和每穗颖花数性状的遗传模型均符合2对加性-显性-上位性主基因+加性-显性多基因模型。根据遗传模型,对模型中成分分布进行拟合,真实地再现性状的次数分布规律。同时发现,2个性状的遗传均以加性效应为主。植株高对植株矮呈部分显性,在杂种优势利用中可以提高杂种的生物产量,增强杂种抗倒性。每穗颖花数的少对多呈部分显性,不利于大穗的形成,影响产量优势的发挥。因此,为了合理利用矮93亲本的株高较矮特性,选用遗传距离较远、丰产性高的恢复系或不育系杂交,打破每穗颖花数不利基因的连锁,选育高产杂交水稻新组合。  相似文献   

14.
李浦  王平  沈向群  吴志刚  张玉静  李娜 《种子》2012,31(5):54-57
采用W217×W203组合的P1、P2、F1、B1、B2和F2共6个世代的花色色调值,利用主基因+多基因混合遗传模型多世代联合分析方法进行遗传分析.结果表明,色素万寿菊橙红色花性状最优遗传模型为两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因遗传效应为主,多基因效应为辅.主基因加性效应、显性效应和上位性效应作用很大,主基因遗传力受环境影响较小.在F2群体中主基因遗传率为49.13%,多基因遗传率为48.25%;在B1群体中主基因遗传率为84.23%;在B2群体中主基因遗传率为74.41%,多基因遗传率为18.24%.  相似文献   

15.
叶片是玉米植株进行光合作用最主要的器官,对玉米产量贡献巨大。利用1份玉米穗三叶窄叶和2份穗三叶宽叶自交系为材料,构建2套6世代分离群体(群体1和群体2),利用经典植物数量性状混合遗传模型主基因+多基因多世代联合分析方法,对玉米穗三叶叶片宽度的遗传效应进行分析。结果表明,2套群体穗三叶叶宽遗传均受不同的基因数量控制,属于不同的多基因遗传模型。在群体1中,穗上叶叶宽符合1对加性-显性主基因+加性-显性-上位性多基因模型(D-0),穗位叶叶宽符合2对基因加性-显性-上位性模型(B-1),穗下叶叶宽符合2对基因加性-显性模型(B-2)。在群体2中,穗上叶叶宽符合2对加性主基因+加性-显性多基因模型(E-3),穗位叶和穗下叶叶宽符合1对加性主基因+加性-显性多基因模型(D-2)。综上可知,玉米叶宽主要受主效基因控制,且在不同的遗传背景下,玉米穗三叶的遗传模式存在差异,穗位叶、穗上叶及穗下叶的遗传模式均受遗传背景的影响。  相似文献   

16.
本研究以长条形黄瓜‘二早子’为母本,短棒形黄瓜‘NC-76’为父本,及其构建的F1、F2共四个世代的遗传群体为研究材料,利用主基因+多基因混合遗传模型分析黄瓜果形的遗传特性。结果表明:在F2分离群体中,瓜长和果形指数两个性状均呈连续变异和正态分布,表明两性状均为多基因控制的数量遗传;瓜长性状的遗传符合2对加性-显主基因(B-2)模型,果形指数的遗传符合加性-显性-上位性多基因(C-0)模型;控制瓜长性状的两对主基因以加性效应为主,两者之间的加性效应相差不大,第一主基因存在负显性效应为-3.033,第二主基因显性正效应较小,为0.123,主基因遗传率为88.09%;控制果形指数性状为多基因遗传,遗传率为23.26%;瓜长受环境影响较小,而果型指数受环境影响较大,两者的环境方差占表现方差的比例分别为11.91%和76.74%。  相似文献   

17.
应用极大似然法分析小麦穗长的遗传   总被引:1,自引:0,他引:1  
采用质量—数量性状遗传的极大似然分析方法,对长穗小麦品系93(220)的主茎穗长进行了质量—数量遗传模型测验和主、微基因效应与变异估计。结果表明:长穗小麦新品系93(220)的主茎穗长为一典型的质量—数量性状,由一个主基因和若干微基因共同控制;一对隐性主基因控制穗长,附合加性——显性遗传模型,F1代表现为部分显性,隐性主基因增加主茎穗长的效应平均为1.47,微基因遗传效应为2.83cm,隐性主基因个体主茎穗长表现为长穗。  相似文献   

18.
在阿子营低温冷害条件下,以十和田×(十和田和丽江新团黑谷BC3 F9)配制的BC4F1、BC4F2及亲本为材料,采用主基因+多基因混合遗传模型,对粳稻丽江新团黑谷作耐冷基因供体培育的近等基因系孕穗期耐冷性8个指标性状进行遗传研究.结果表明,结实率和穗颈长均属于2对加性-显性-上位性主基因+加性-显性多基因遗传,主基因遗传率分别为80.11%和75.06%;株高为2对加性-显性主基因+加性-显性多基因遗传,主基因遗传率为44.39%;穗下节长属于2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传,主基因遗传率为57.36%;穗长为2对主基因加性-显性-上位性遗传;每穗实粒数为2对主基因加性-显性遗传;每穗秕粒数为2对加性主基因+加性-显性多基因遗传;总粒数为1对加性-显性主基因+加性-显性-上位性多基因遗传.  相似文献   

19.
陆地棉早熟性状多世代联合遗传分析   总被引:4,自引:2,他引:2  
【目的】旨在探讨连续世代陆地棉早熟性状遗传规律。【方法】以陆地棉中751213和鲁棉研28为亲本,通过对P_1,P_2,F_1,F_2和F_(2:3)5个世代联合分析,研究株高、果枝始节、始节高度、花铃期、播种至开花和全生育期等早熟性状的遗传模型。【结果】株高和果枝始节的最佳模型为1对加性-显性主基因+加性-显性-上位性多基因混合模型(D);播种至开花时间最佳模型为1对完全显性主基因+加性-显性多基因模型(D-3);全生育期最佳模型为2对加性-显性-上位性主基因+加性-显性-上位性多基因模型(E);花铃期和始节高度最佳模型均为1对负向完全显性主基因+加性-显性多基因模型(D-4)。【结论】上述对陆地棉早熟性状的混合遗传模型分析结果,有助于阐明陆地棉早熟性状遗传规律。  相似文献   

20.
对甜玉米品质性状进行主基因+多基因遗传分析,为甜玉米品质改良提供理论依据。用果糖含量、膳食纤维含量和维生素C含量差异显著的甜玉米自交系配制杂交组合T77(高值亲本)×T15(低值亲本)。以该组合F2代群体为试验材料,对其果糖含量、膳食纤维含量和维生素C含量等3个品质性状进行测定,利用主基因+多基因混合遗传模型分析3个性状的最适遗传模型及相关遗传参数。试验表明,果糖含量的最适模型为A-1,是受1对主基因控制的加性-显性遗传模型,主基因遗传率为76.4%;膳食纤维含量和维生素C含量的最适模型同为B-1,表明这2个性状符合2对主基因控制的加性-显性-上位性混合遗传模型,主基因遗传率分别为63.6%和64.7%。在育种实践中,对甜玉米果糖含量、膳食纤维含量和维生素C含量的遗传改良和选择,可在早期世代进行,同时要注意一定的环境因素,采用聚合回交或轮回选择的方法来积累微效基因以提高育种效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号