首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
[目的]探讨杉木人工林采伐前、后及其采伐迹地造林后林地土壤调蓄水分功能的变化,揭示采伐地造林后,幼林对土壤蓄水功能的调节恢复作用.[方法]采用定位连续观测方法,在24年生杉木人工林伐前、伐后以及造林后1年、3年、5年、8年的样地内采集土壤样品,进行室內测试分析.[结果]表明:与伐前相比,杉木人工林采伐后1 m深土壤层毛管孔隙度提高了1.70%,非毛管孔隙度下降了4.95%;伐后1 m深土壤层最大持水力、最小持水力和毛管持水力比伐前分别提高了4.02%、2.67%和5.31%,但土壤贮水力下降14.30%;0~20,20~40 cm土层的初渗速率分别下降19.81%和16.95%,稳渗速率分别下降12.97%和14.49%;造林后林分对土壤调蓄水分功能的调节作用,随着林龄增加而增大,8年生幼林0~20,20~40 cm土层对土壤水分的初渗调控能力恢复到采伐前的62.50%和58.83%,稳渗的调控恢复到采伐前的62.22%和48.79%;若以伐后与伐前土壤的最大持水力、最小持水力和毛管持水力的差值为100%,8年生幼林其与伐前的差异只有16.90%,17.84%和23.20%.土壤贮水力恢复到采伐前33.34%的水平.[结论]杉木人工林的采伐导致土壤调蓄水分功能减弱,采伐迹地再造林能逐步改善林地土壤调蓄水分功能,而且随着幼林林龄增加调节功能逐步增强.  相似文献   

2.
黄土区人工林的土壤持水力与有效水状况   总被引:33,自引:0,他引:33  
以晋西北黄土区河北杨林,小叶杨林和柠条灌木林为对象,就各人工林地的土壤持水力和在4个不同降水的土壤有效水动态特点进行了研究。结果表明,林地间土壤持水力和比水容量为:河北杨林〉小叶杨林〉柠条灌木林。各林地的土壤持水力和供水力普遍偏低。  相似文献   

3.
Ogaya  Roma; Penuelas  Josep 《Forestry》2007,80(3):351-357
A holm oak forest was exposed to an experimental drought (reductionof 15 per cent soil moisture as predicted for this area forthe next decades by General Circulation Models and ecophysiologicalmodels) during 7 years to elucidate the reproductive responsesof the dominant species Quercus ilex L., Arbutus unedo L. andPhillyrea latifolia L. Soil moisture was partially reduced byplastic strips intercepting rainfall and by ditch exclusionof water runoff. During the period studied, meteorological conditionsand soil moisture were continuously monitored, together withflower and fruit production in the three dominant species. InQ. ilex and A. unedo, flower and specially fruit productionwere strongly correlated with annual rainfall, but not in P.latifolia. The experimental drought reduced flower and fruitproduction in Q. ilex by 30 per cent and 45 per cent, respectively.Reductions in flower and fruit production were not significantin A. unedo and were not observed in P. latifolia. A decreasein production of reproductive structures and the different responseof the species studied to a decrease in water availability couldinduce important changes in the competitive ability of the differentspecies and in the long term in the community species compositionand future distribution of these Mediterranean species.  相似文献   

4.
Beech woodland can be restored by direct planting of beech (Fagussylvatica L.) seedlings in abandoned areas, but this methodis generally avoided in forestry because of the growth difficultiesof beech in full-light conditions. This study tested a methodthat consists of planting beech seedlings in full-light conditionswith silver birch (Betula pendula Roth.) or Scots pine (Pinussylvestris L.) as nurse trees. A total of 65 two-year-old beechseedlings surrounded by either 3, 4, 5 or 6 pine or birch seedlingsor without competitors were planted in bare-soil open-fieldconditions in Central France. Tree growth and light availabilitywere monitored at the end of each of the following 3 years,and soil moisture was also measured the last year. At the endof the experiment, aerial biomass measurements were made onthe beeches. Results showed that relative beech growth in termsof diameter was significantly reduced by the local neighbouringtrees and that this reduction was particularly noticeable inthe pine treatments where there was extensive pine seedlingdevelopment. In contrast, relative beech height did not exhibitany significant variations among the treatments. Light availabilitywas decreased by the neighbouring trees, especially in the pinetreatments. Light reduction was more pronounced in the last2 years and in the middle or lower parts of the canopy of thesubject beech. Soil water content was lower under the pine canopiesthan under the birch canopies, and was positively correlatedto beech relative diameter growth. Specific leaf area, height-to-diameterratio and crown length-to-crown width ratio weakly but significantlyincreased with competition from the neighbours. Beech biomasspartitioning was only weakly affected by the treatments. Thisstudy showed that nurse trees tend to reduce beech growth butimprove form although effects remained weak due to the insufficientlength of the experiment. Further studies are also needed toquantify the effects of the neighbourhood on the growth of competitiveherbaceous vegetation and on changes in the microclimatic conditions.  相似文献   

5.
通过对双江林场造林的 15种优良阔叶树用直接点数法及叶面积法和称重法 ,测定了它们的叶面积指数、叶片生物量和滞水量 ,并对各树种的叶面积指数、叶片生物量和滞水量进行了排序。初步指出了叶面积指数、叶片生物量与树种的耐荫性及生长量的关系 ,通过对滞水量的分析 ,初步指出了滞水量与树种叶片结构和树冠结构间的关系及对水土保持的作用。  相似文献   

6.
六盘山典型植被类型土壤水文生态功能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对土壤的水文物理性质、持水能力及渗透性的测定,分析了宁夏六盘山南坡典型森林植被类型的持水性能和渗透能力。结果表明,六盘山典型植被的最大贮水能力486.5 604.8 mm,有效贮水能力61.0 292.1 mm,砾石体积含量的大小是影响土壤有效贮水能力的关键因素。典型植被土壤表层(0 10 cm)的初始入渗速率4.0024.99 mm.min-1,稳定渗透速率1.18 15.17 mm.min-1。利用Kostiakov方程、Horton方程和Philip方程模拟了土壤渗透过程,表明Horton方程是较好的模拟形式,土壤非毛管孔隙度对土壤水分渗透起到关键作用,而砾石含量是通过影响土壤非毛管孔隙度而影响土壤水分渗透作用。  相似文献   

7.
乐昌含笑人工林的土壤肥力和涵养水源功能研究   总被引:6,自引:1,他引:6  
吴鹏飞 《福建林业科技》2006,33(2):74-77,83
通过对乐昌含笑和杉木人工林生物量和土壤肥力的调查,进行乐昌含笑人工林培肥土壤和涵养水源功能的研究,结果表明:营造乐昌含笑人工林后林地土壤水稳性团聚体含量增加,团聚体的稳定性增强,容重降低,总孔隙度增加,林地土壤结构、孔隙和养分状况得到不同程度的改善,乐昌含笑人工林具有比杉木林更好的培肥土壤功能;乐昌含笑叶的最大持水率明显高于杉木叶,其林分地上部分最大持水量是杉木林的1.14倍,同时由于乐昌含笑林土壤结构及孔隙状况的改善,林地蓄水能力增强,使得乐昌含笑人工林表现出比杉木林更好的水源涵养功能。  相似文献   

8.
This study investigates whether tree decline in Eucalyptus gomphocephala (tuart) is associated with the functional diversity of soil bacterial communities. We selected 12 sites with different stages of decline and assessed crown health [Crown density (CD), Foliage transparency (FT), Uncompacted live crown ratio (ULCR), Crown dieback ratio (CDR) and Epicormic index (EI)] and soil bacterial functional diversity based on Biolog EcoPlates™ incubation [Average well colour development (AWCD), Shannon diversity (H′), richness (S) and Shannon evenness (E)]. Crown health indices differed between sites with EI being the most robust indicator of decline in crown health followed by CDR and CD (P < 0.05). Soil bacterial indices collected at 0–10 and 20–30 cm soil depth between December (summer, dry season) and May (autumn, start of wet season) differed between sites (P < 0.05), and significant relationships between crown health indices, except ULCR, and all soil bacterial indices were observed. Principle component analysis (PCA) showed that a decrease in the utilization of carbohydrates, carboxylic acids, amino acids and amines by the soil bacterial communities correlated to sites with poor crown health, indicating some changes in physiological responses of bacterial groups with declining tree health. Using stepwise regression analyses, in the 0–10 cm soil layer in December, itaconic acid had a 46% contribution to the EI. Carboxylic acids, including itaconic acid, have a strong ability to solubilize soil minerals in calcareous soil, and these possibly increased the availability of soil mineral nutrients in the healthier sites compared to the declining sites, particularly in the dry season. In addition, lack of soil water in the declining sites limited soil bacterial diversity and was positively correlated with EI in the 0–10 cm soil layer in December. In conclusion, soil bacterial functional diversity has a strong relationship with tuart decline and the importance of soil microbes in tuart ecosystem health must be considered in the future.  相似文献   

9.
通过对28年生香叶树和杉木人工林生物量和土壤肥力的测定,进行香叶树和杉木人工林培肥土壤和涵养水源功能的比较研究,结果表明:与杉木人工林相比,营造香叶树人工林后林地土壤水稳性团聚体含量增加,团聚体稳定性增强,土壤密度降低,总孔隙度增加,林地土壤结构状况、孔隙和水分状况得到不同程度的改善,表层土壤养分得到富集,香叶树具有比杉木林更好的培肥土壤功能;香叶树叶的最大持水率高于杉木叶,其林分地上部分持水量是杉木纯林的1.21倍,同时由于香叶树人工林土壤结构及孔隙状况的改善,林地的蓄水能力增强,使得香叶树人工林表现出比杉木林更好的涵养水源功能.  相似文献   

10.
Modern alley cropping designs, with trees aligned in rows and adapted to operating farming machinery, have been suggested for Europe. This paper explores the potential for adoption of cork oak (Quercus suber L.) agroforestry in Portugal and estimates the potential carbon sequestration. Spatial modeling and Portuguese datasets were used to estimate target areas where cork oak could grow on farmland. Different implementation scenarios were then modeled for this area assuming a modern silvoarable agroforestry system (113 trees ha?1 thinned at year 20 for establishing 50 trees ha?1). The YieldSAFE process-based model was used to predict the biomass and carbon yield of cork oak under low and high soil water holding capacity levels. Approximately 353,000 ha are available in Portugal for new cork oak alley cropping. Assuming implementation rates between 10 % of the area with low soil water capacity (60 mm: 15 cm depth, coarse texture) and 70 % of the area with high soil water holding capacity (1,228 mm: 200 cm depth, very fine texture), then carbon sequestration could be 5 × 106 and 123 × 106 Mg CO2 respectively. Due to higher yields on more productive land, scenarios of limited implementation in high productivity locations can sequester similar amounts of carbon as wide implementation on low productivity land, suggesting that a priori land classification assessments can improve the targeting of land and financial incentives for carbon sequestration.  相似文献   

11.
毛竹扩张对常绿阔叶林土壤性质的影响及相关分析   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]为探讨毛竹向邻近常绿阔叶林扩张对土壤性质的影响。[方法]本研究选取江西大岗山森林生态定位站常绿阔叶林、2∶8竹阔混交林、8∶2竹阔混交林和毛竹纯林为研究对象,对土壤有机碳、密度、孔隙度、持水量和贮水量等土壤性质和水分特征进行研究。[结果]常绿阔叶林在毛竹扩张过程中,土壤碳元素含量呈先增后降的趋势。相关分析表明:土壤有机碳与非毛管持水量和现有贮水量呈极显著相关,与土壤密度和总孔隙度呈显著相关,各指标相互作用共同影响了土壤有机碳含量在扩张过程中的变化特征。[结论]常绿阔叶林表层土壤密度、孔隙度和持水量等特征综合优于混交林和毛竹纯林,这为竹鞭扩张后竹笋萌发创造了条件;当常绿阔叶林演替到毛竹纯林时,10 60 cm土壤物理性质和持水能力都有所改善,但有机碳含量降为4个林分最低值,大量竹鞭虽然优化了土壤物理性质,但无性繁殖导致土壤碳元素大量消耗,加之择伐和挖笋等人工干扰,毛竹纯林土壤有机碳含量较低。调节土壤碳含量以及土壤结构和水分特征可能是今后控制毛竹林扩张,维持群落生态系统稳定性的重要生态策略。  相似文献   

12.
The rejuvenation ecology of three main tree species in anthropogenic pine (Pinus sylvestris L.) forests is explored in our study. We focus on the scale of micro-plots, which provide the safe sites for tree rejuvenation. We thrive on the multi-factorial relationship of tree establishment and driving ecological factors using a large dataset from pine stands in NE Germany and applying multivariate analyses. The success of the establishment of the investigated focal tree species Fagus sylvatica L., Quercus petraea Liebl. and Pinus sylvestris L. is, on general, mostly affected by three factors, i.e. water balance of the upper soil layers, browsing pressure, and diaspore sources. Our investigations on the micro-plot scale revealed species-specific differences. For beech saplings <50 cm growth height, primarily the availability of water, indicated by available water capacity (AWC), thickness, quality, and structure of the organic layer, silt and humus content in the topsoil, and the lack of a dense competitive herb layer, were identified as most important factors. On the contrary, oak seems hardly be restricted by hydrologic and/or trophic deficits in the topsoil or humus layer. In conclusion and comparison to Fagus sylvatica L., we assume for Quercus petraea Liebl. advantages in natural regeneration processes under sub-continental climate conditions and thus under the scenarios of climate change. Pinus sylvestris L. regeneration in our investigation area occurs only in a narrow niche. We conclude with regard to future forest development and the objective of stand conversion with low management intensity that oak should be favoured within natural stand regeneration.  相似文献   

13.
通过对"永林公司"不同森林经营模式下水源涵养功能的比较研究,结果表明:不同经营模式林冠层的水源涵养能力都大于灌草层,部分枯枝落叶层大于林冠层。其中,林冠层持水量最大的为采育结合模式,持水量高达16.7461t/hm2,封禁保护模式和生态功效模式林冠层持水量也较高,均在10t/hm2之上。相比之下,保育补植模式林冠层持水量最小,仅有1.8334 t/hm2;灌木层持水量最大的是块状利用模式,为5.4354t/hm2;最小的是采育结合模式,为0.1346 t/hm2。其他经营模式的持水量大小相差不大,在0.2-0.4 t/hm2之间;枯枝落叶层的生物量大致在5-17 t/hm2范围内,其中持水量最高的为改良增效模式,达到16.2668 t/hm2;其它依次为保育补植模式、封禁保护模式、间伐调整模式、生态功效模式、定向培育模式、集约经营模式、采育结合模式、块状利用模式;另外,各种经营模式土壤的贮水能力大小顺序为生态功效模式改良增效模式采育结合模式集约经营模式封禁保护模式块状利用模式定向培育模式间伐调整模式保育补植模式;各种经营模式中土壤渗透能力比较好的有间伐调整模式和采育结合模式,而改良增效模式、定向培育模式和集约经营模式的渗透能力比较差。  相似文献   

14.
Sycamore (Acer pseudoplatanus L.) is an invasive, non-nativespecies in Great Britain and its management in conservationareas is controversial. Climate change adds further uncertaintyto decision making. We investigated the role of management historyin determining present-day abundance and the effects of climaticvariability on growth, photosynthesis and phenology at WythamWoods, a UK Environmental Change Network (ECN) monitoring site.Relatively few sycamore trees were found in undisturbed ancient,semi-natural woodland and recent plantations, despite beingcommon in other areas of the site. Sycamore grew more slowlythan ash (Fraxinus excelsior L.), its principal competitor,but at a similar rate to pedunculate oak (Quercus robur L.)in the period 1993–2005. There were fewer sycamore thanash seedlings, regardless of which species dominated the canopy.Growth of sycamore was slower in dry periods than wet ones andlower photosynthetic rates were measured in canopy leaves underdry compared with wet soil conditions. This study thereforesuggests that sycamore does not present a serious threat toundisturbed ancient woodland on the site and that it may eventuallydecline in areas of the site where it competes with ash, inthe absence of disturbance. It may also decline under climatechange if summer droughts become more frequent.  相似文献   

15.
喀斯特山地人工杜仲林枯落物和土壤持水特性初步研究   总被引:6,自引:0,他引:6  
研究喀斯特山地两种母岩发育土壤上生长的人工杜仲林枯落物和土壤的持水特性。结果表明:杜仲林枯落物吸水速度快、持水量大。浸泡10小时的时候(吸水接近饱和时),白云质石灰岩和泥质灰岩发育的土壤上生长的杜仲林枯落物持水量分别是3144 4g kg-1和2830 0g kg-1,是其自身重量的314 4%和283%。土壤容重分别为1 14g cm-3、1 27g cm-3;最大持水量为43 66%、38 38%;毛管持水量为29 60%、24 83%;田间持水量为12 70%、20 92%。因此,杜仲不仅是一个用途广泛的优良经济林树种,而且也是公益林建设中营造水土保持林的优良树种。另外,就枯落物和土壤特性而言,白云质石灰岩发育的土壤上生长的人工杜仲林持水能力比泥质灰岩发育的土壤上生长的人工杜仲林强。  相似文献   

16.
The physical properties of soil on two hill slopes of 35% and 55% in orange orchard cultivated by the Mro tribe of Chittagong Hill Tracts (CHTs) were evaluated and compared with those of bushy hill forests. Soil samples were collected from three different depths (0-5 cm, 5-15 cm and 15-30 cm), digging three profiles in each land use for determining moisture content, organic matter content and particle density. Maximum water holding capacity, field capacity, dry and moist bulk density and porosity were determined only for the surface soils. Moisture content at all the soil depths was significantly higher (p≤ 0.05) in orange orchard than in forest on both the slopes. Orange orchard contained lower mean soil organic matter than forest on 55% slope, while it contained higher values on 35% slope compared to forest. The highest value of the above two properties was found at surface soil in both the land uses on both the slopes, decreasing with the increase of soil depth. On both the slopes maximum water holding capacity and porosity of surface soil and particle density at all soil depths were lower in orange orchard compared to those in forest. Field capacity values of surface soil did not show consistency in trend for the differences between the two land uses on both the slopes. Bulk density value of moist and dry surface soil was higher in orange orchard than in forest on both the hill slopes.  相似文献   

17.
To demonstrate the seed dormancy and germination characters of Robinia pseudoacacia L., an exotic tall tree species in Japan, we applied scarification, cold stratification, diurnal thermal regime, heat shock, and/or winter weathering treatments to the seeds. These characters differed markedly among three seed sources (Trees K, B, and I). Scarification revealed that most seeds from Tree K showed physical dormancy, whereas those from Tree B had no physical dormancy. The seeds from Tree I showed weak physical dormancy so that the seeds eventually germinate without any treatments as time goes by. The physical dormancy in Tree K was broken by a long, high heat shock treatment. The results imply that seeds from Tree K respond to fire in natural conditions. Seeds from Tree I responded to a wide range of thermal regimes, except for long, high heat shock. In contrast, most seeds from Tree B absorbed water during cold stratification and some germinated. However, many seeds from Tree B died in the soil during the winter, presumably because of microbial and fungal infections. Seeds from Trees I and B acquired physical dormancy by weathering during the winter, implying that seedpods that remain in the crown function as an aerial seed bank. R. pseudoacacia may be able to produce various levels in dormancy with respect to the winter condition.  相似文献   

18.
以崇阳县毛竹为研究对象,在4种密度(D1)1 300±100、(D2)1 900±100、(D3)2 500±100及(D4)3 100±100株·hm~(-2)毛竹林分内通过标准地设置与调查对毛竹林分水源涵养能力进行了研究。结果表明,虽然不同毛竹林密度林冠层截留率之间的差异不显著,但截留量之间的差异极显著。半分解以及未分解凋落物持水量与浸泡时间之间均为对数方程,半分解以及未分解凋落物吸水速率与浸泡时间之间均为幂函数方程。不同密度凋落物最大持水量0.81~1.21 mm,并随林分密度增加而增加。凋落物总最大持水率380.39%~402.13%。林分有效拦蓄量0.75~0.92 mm,有效拦蓄率292.92%~311.31%,并密度增大而增大。毛竹林土壤土壤含水率11.21%~13.70%,土壤容重1.19~1.34 g/cm~3,毛管总孔隙度52.89%~54.77%,土壤毛管总孔隙度随土层深度的增加而减小,土壤非毛管孔隙度9.39%~10.22%。林分密度对土壤物理性状及其土壤渗透性能影响均不显著。毛竹林土壤饱和蓄水量3 173.35~3286.11 t·hm~(-2),不同密度毛竹林分土壤层饱和蓄水量之间的差异不显著。虽然不同密度毛竹林分土壤毛管蓄水量之间的差异不显著,但非毛管蓄水量差异显著。毛竹林水源涵养总量584.15~626.58 t·hm~(-2),土壤蓄水量、林冠截留量及凋落物持水量分别占96.41%~97.91%、0.79%~1.51%及1.30%~2.07%。  相似文献   

19.
杉木天然林和人工林涵养水源功能研究   总被引:8,自引:0,他引:8  
通过对杉阔天然混交林、天然杉木林和杉木人工林的林冠层、林下植被层、枯枝落叶层和土壤层水源涵养功能的研究,结果表明:两种天然林总持水量分别比人工林高699 18t·hm-2和337 67t·hm-2,天然林具有更好的涵蓄水分功能。林分不同层次的持水量大小顺序为:土壤层>枯枝落叶层>林冠层>林下植被层,土壤层是森林涵蓄降水的主要场所,其贮水量占林分总贮水量的90%以上。天然林地上部分各层次的持水量分配较为均匀,而杉木人工林林冠层持水量大大高于林下植被和枯枝落叶层的持水量,这种结构不利于削弱林内降雨侵蚀力,土壤也较为板结,渗透功能较差。  相似文献   

20.
对马尾松水土保持林的截水与持水功能进行了计量研究.结果表明:林冠的截水量与冠层枝叶生物量呈正相关;林分的截雨量和降雨量的关系可用Richards函数较好地拟合;灌木的截水能力与其叶质叶形有关,林分枯落物不仅具有较强的特水能力,还能明显改善土壤结构;土壤的非毛管孔隙度受植被因素的显著影响.并提出了各植被因子的持水模型和土壤孔隙度预测模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号