首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context

Forest management and disturbances cause habitat fragmentation for saproxylic species living on old-growth attributes. The degree of habitat spatiotemporal continuity required by these species is a key question for designing biodiversity-friendly forestry, and it strongly depends on species’ dispersal. The “stability–dispersal” model predicts that species using stable habitats should have lower dispersal abilities than species associated with ephemeral habitat and thus respond to habitat availability at smaller scales.

Objectives

We aimed at testing the stability–dispersal model by comparing the spatial scales at which saproxylic beetle guilds using substrates with contrasted stability (from stable to ephemeral: cavicolous, fungicolous, saproxylophagous and xylophagous guilds) are affected by landscape structure (i.e. habitat amount and aggregation).

Methods

We sampled saproxylic beetles using a spatially nested design (plots within landscape windows). We quantified habitat availability (tree cavities, polypores and deadwood) in 1-ha plots, 26-ha buffers around plots and 506-ha windows, and analyzed their effect on the abundance and diversity of associated guilds.

Results

The habitat amount within plots and buffers positively affected the abundance of the cavicolous and the fungicolous guilds whereas saproxylophagous and xylophagous did not respond at these scales. The habitat aggregation within windows only positively affected the saproxylophagous species richness within plots and also on the similarity in species composition among plots.

Conclusions

Beetle guilds specialized on more stable habitat were affected by landscape structure at smaller spatial scales, which corroborated the stability–dispersal model. In managed forests, the spatial grain of conservation efforts should therefore be adapted to the target habitat lifetime.

  相似文献   

2.
Gao  Boyu  Gong  Peng  Zhang  Wenyuan  Yang  Jun  Si  Yali 《Landscape Ecology》2021,36(1):179-190
Context

With the expansion in urbanization, understanding how biodiversity responds to the altered landscape becomes a major concern. Most studies focus on habitat effects on biodiversity, yet much less attention has been paid to surrounding landscape matrices and their joint effects.

Objective

We investigated how habitat and landscape matrices affect waterbird diversity across scales in the Yangtze River Floodplain, a typical area with high biodiversity and severe human-wildlife conflict.

Methods

The compositional and structural features of the landscape were calculated at fine and coarse scales. The ordinary least squares regression model was adopted, following a test showing no significant spatial autocorrelation in the spatial lag and spatial error models, to estimate the relationship between landscape metrics and waterbird diversity.

Results

Well-connected grassland and shrub surrounded by isolated and regular-shaped developed area maintained higher waterbird diversity at fine scales. Regular-shaped developed area and cropland, irregular-shaped forest, and aggregated distribution of wetland and shrub positively affected waterbird diversity at coarse scales.

Conclusions

Habitat and landscape matrices jointly affected waterbird diversity. Regular-shaped developed area facilitated higher waterbird diversity and showed the most pronounced effect at coarse scales. The conservation efforts should not only focus on habitat quality and capacity, but also habitat connectivity and complexity when formulating development plans. We suggest planners minimize the expansion of the developed area into critical habitats and leave buffers to maintain habitat connectivity and shape complexity to reduce the disturbance to birds. Our findings provide important insights and practical measures to protect biodiversity in human-dominated landscapes.

  相似文献   

3.
A comprehensive understanding of variables associated with spatial differences in community composition is essential to explain and predict biodiversity over landscape scales. In this study, spatial patterns of bird diversity in Central Kalimantan, Indonesia, were examined and associated with local-scale (habitat structure and heterogeneity) and landscape-scale (logging, slope position and elevation) environmental variables. Within the study area (c. 196 km2) local habitat structure and heterogeneity varied considerably, largely due to logging. In total 9747 individuals of 177 bird species were recorded. Akaike's information criterion (AIC) revealed that the best explanatory models of bird community similarity and species richness included both local- and landscape-scale environmental variables. Important local-scale variables included liana abundance, fern cover, sapling density, tree density, dead wood abundance and tree architecture, while important landscape-scale variables were elevation, logging and slope position. Geographic distance between sampling sites was not significantly associated with spatial variation in either species richness or similarity. These results indicate that deterministic environmental processes, as opposed to dispersal-driven stochastic processes, primarily structure bird assemblages within the spatial scale of this study and confirm that highly variable local habitat measures can be effective means of predicting landscape-scale community patterns.  相似文献   

4.
Bosco  Laura  Wan  Ho Yi  Cushman  Samuel A.  Arlettaz  Raphaël  Jacot  Alain 《Landscape Ecology》2019,34(1):105-117
Context

Herbicide treatments in viticulture can generate highly contrasting mosaics of vegetated and bare vineyards, of which vegetated fields often provide better conditions for biodiversity. In southern Switzerland, where herbicides are applied at large scales, vegetated vineyards are limited in extent and isolated from one another, potentially limiting the distribution and dispersal ability of organisms.

Objectives

We tested the separate and interactive effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework, along with additional environmental factors. We identified which variables at which scales were most important in predicting patterns of invertebrate abundance.

Methods

We used a factorial design to sample across a gradient of habitat amount (area of vegetated vineyards, measured as percentage of landscape PLAND) and fragmentation (number of vegetated patches, measured as patch density PD). Using 10 different spatial scales, we identified the factors and scales that most strongly predicted invertebrate abundance and tested potential interactions between habitat amount and fragmentation.

Results

Habitat amount (PLAND index) was most important in predicting invertebrate numbers at a field scale (50 m radius). In contrast, we found a negative effect of fragmentation (PD) at a broad scale of 450 m radius, but no interactive effect between the two.

Conclusions

The spatial scales at which habitat amount and fragmentation affect invertebrates differ, underpinning the importance of spatially explicit study designs in disentangling the effects between habitat amount and configuration. We showed that the amount of vegetated vineyards has more influence on invertebrate abundance, but that fragmentation also contributed substantially. This suggests that efforts for augmenting the area of vegetated vineyards is more beneficial for invertebrate numbers than attempts to connect them.

  相似文献   

5.
Context

Wild flowering plants and their wild insect visitors are of great importance for pollination. Montane meadows are biodiversity hotspots for flowering plants and pollinators, but they are contracting due to tree invasion.

Objectives

This study quantified flowering plants and their flower-visitor species in montane meadows in the western Cascade Range of Oregon. Species diversity in small, isolated meadows was expected to be lower and nested relative to large meadows. Alternatively, landform features may influence richness and spatial turnover.

Methods

Flowering plants and their visitors were sampled in summers of 2011–2017 in twelve montane meadows with varying soil moisture. All flowering plants and all flower-visitors were recorded during five to seven 15 min watches in ten 3?×?3 m plots in each meadow and year.

Results

A total of 178 flowering plant species, 688 flower-visitor species and 137,916 interactions were identified. Richness of flower-visitors was related to meadow patch size, but neither plant nor flower-visitor richness was related to isolation measured as meadow area within 1000 m. Species in small meadows were not nested subsets of those in large meadows. Species replacement accounted for more than 78% of dissimilarity between meadows and was positively related to differences in soil moisture.

Conclusions

Although larger meadows contained more species, landform features have influenced meadow configuration, persistence, and soil moisture, contributing to high plant and insect species diversity. Hence, conservation and restoration of a variety of meadow types may promote landscape diversity of wild plants and pollinators.

  相似文献   

6.

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.
  相似文献   

7.

Context

The habitat amount hypothesis has rarely been tested on plant communities. It remains unclear how habitat amount affect species richness in habitat fragments compared to island effects such as isolation and patch size.

Objectives

How do patch size and spatial distribution compared to habitat amount predict plant species richness and grassland specialist plant species in small grassland remnants? How does sampling area affect the prediction of spatial variables on species richness?

Methods

We recorded plant species density and richness on 131 midfield islets (small remnants of semi-natural grassland) situated in 27 landscapes in Sweden. Further, we tested how habitat amount, compared to focal patch size and distance to nearest neighbor predicted species density and richness of plants and of grassland specialists.

Results

A total of 381 plant species were recorded (including 85 grassland specialist species). A combination of patch size and isolation was better in predicting both density and richness of species compared to habitat amount. Almost 45% of species richness and 23% of specialist species were explained by island biogeography parameters compared to 19 and 11% by the amount of habitat. A scaled sampling method increased the explanation level of island biogeography parameters and habitat amount.

Conclusions

Habitat amount as a concept is not as good as island biogeography to predict species richness in small habitats. Priority in landscape planning should be on larger patches rather than several small, even if they are close together. We recommend a sampling area scaled to patch size in small habitats.
  相似文献   

8.
Context

The switching pattern between behavioral modes provides a mechanistic basis for understanding how animals perceive and memorize the habitat quality in their home ranges.

Objectives

We assessed if Magellanic woodpeckers (Campephilus magellanicus) move based on habitat quality at local (neighboring trees) and home range scales.

Methods

We used state-space models to examine the relationship between remotely-sensed estimates of habitat quality (tree decay) and movement of adult woodpeckers tracked with GPS telemetry in southern Chile.

Results

Woodpeckers spent most time (>?80%) in the area-restricted search (ARS) mode in contrast to the exploratory transient mode, characterized by frequent directional displacements (>?50 m). The extent to which individuals switched between behavioral modes was related to habitat quality at different scales. Woodpeckers switched to and remained in the ARS mode when encountering moderate levels of heterogeneity in habitat quality. At very low or high heterogeneity levels, however, individuals switched to and remained in the transient mode, respectively. Likewise, as habitat quality declined locally and across home range, woodpeckers were more likely to adopt a transient mode.

Conclusions

Although woodpeckers seemed to easily perceive and memorize habitat quality at different spatial scales, our results suggest that spatial memory will less effective under extreme levels of habitat heterogeneity.

  相似文献   

9.
Habitat specificity indices reflect richness (α) and/or distinctiveness (β) components of diversity. The latter may be defined by α and γ (landscape) diversity in two alternative ways: multiplicatively () and additively (). We demonstrate that the original habitat specificity concept of Wagner and Edwards (Landscape Ecol 16:121–131, 2001) consists of three independent components: core habitat specificity (uniqueness of the species composition), patch area and patch species richness. We describe habitat specificity as a family of indices that may include either area or richness components, or none or both, and open for use of different types of mean in calculation of core habitat specificity. Core habitat specificity is a beta diversity measure: the effective number of completely distinct communities in the landscape. Habitat specificity weighted by species number is a gamma diversity measure: the effective number of species that a patch contributes to landscape richness. We compared 12 habitat specificity indices by theoretical reasoning and by use of field data (vascular plant species in SE Norwegian agricultural landscapes). Habitat specificity indices are strongly influenced by weights for patch area and patch species richness, and the relative contribution of rare vs. common species (type of mean). The relevance of properties emphasized by each habitat specificity index for evaluation of patches in a biodiversity context is discussed. Core habitat specificity is emphasized as an ecologically interpretable measure that specifically addresses patch uniqueness while habitat specificity weighted by species number combines species richness and species composition in ways relevant for conservation biological assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.

Context

Mediterranean forests have been fragmented intensively over time, thereby yielding small and isolated forest remnants. They host a rich variety of epiphytes, which may be affected by landscape structure. Previous studies have analyzed the influence of habitat quality on these epiphytic communities, but there is little knowledge of the effects of other fragment features.

Objectives

We evaluated the impacts of forest loss and fragmentation on epiphytic communities (lichens and bryophytes) at plot and fragment scales after controlling the variation in forest structure and management.

Methods

We considered 40 fragments of dense oak forests in a human-modified landscape. We quantified their spatial attributes (size and shape), the quality of the surrounding matrix and the forest stand structure. We modeled community traits, and the presence and abundance of species at fragment and plot scales.

Results

Fragment size, shape, and the quality of the surrounding matrix were key factors that affected epiphytic richness and diversity. Larger and more regularly shaped fragments hosted the richest and most diverse communities, possibly offering a larger core area and thus favoring the entry of typical forest species. A high-contrast matrix was only favorable in small fragments, probably allowing the arrival of propagules. The species-level response was highly variable.

Conclusions

Landscape structure provides powerful explanations of the richness and diversity losses among epiphytes. Forest management should ensure the retention of the largest possible continuous forests. The management strategy of the matrix will depend on the conservation goal, since we observed different effects related with quality and fragment size.
  相似文献   

11.
Context

One approach to maintain the resilience of biotic communities is to protect the variability of abiotic characteristics of Earth’s surface, i.e. geodiversity. In terrestrial environments, the relationship between geodiversity and biodiversity is well recognized. In streams, the abiotic properties of upstream catchments influence stream communities, but the relationships between catchment geodiversity and aquatic biodiversity have not been previously tested.

Objectives

The aim was to compare the effects of local environmental and catchment variables on stream biodiversity. We specifically explored the usefulness of catchment geodiversity in explaining the species richness on stream macroinvertebrate, diatom and bacterial communities.

Methods

We used 3 geodiversity variables, 2 land use variables and 4 local habitat variables to examine species richness variation across 88 stream sites in western Finland. We used boosted regression trees to explore the effects of geodiversity and other variables on biodiversity.

Results

We detected a clear effect of catchment geodiversity on species richness, although the traditional local habitat and land use variables were the strongest predictors. Especially soil-type richness appeared as an important factor for species richness. While variables related to stream size were the most important for macroinvertebrate richness and partly for bacterial richness, the importance of water chemistry and land use for diatom richness was notable.

Conclusions

In addition to traditional environmental variables, geodiversity may affect species richness variation in streams, for example through changes in water chemistry. Geodiversity information could be used as a proxy for predicting stream species richness and offers a supplementary tool for conservation efforts.

  相似文献   

12.
The effects of habitat fragmentation on species richness and composition have been extensively studied. However, little is known about how fragmentation affects functional diversity patterns. Fragmentation can indeed affect functional diversity directly (e.g. by promoting traits associated to long-distance dispersal when fragment isolation increases) or indirectly (e.g. by decreasing species richness, hence trait diversity, when fragment area decreases). Here, we used structural equation modeling to determine whether factors associated to forest fragmentation, namely area, habitat heterogeneity, spatial isolation and age have a direct effect on forest herb functional diversity. Using occurrence data from 243 forest fragments located in northern France and six plant life-history traits, we estimated species richness and calculated functional diversity in each of these 243 forest fragments. We found that species richness was the primary driver of functional diversity in these fragments, with a strong positive and direct relationship between species richness and functional diversity. Interestingly, both fragment isolation and age had a direct negative effect on functional diversity independent of their effects on species richness. Isolation selected life-history traits associated with long-distance dispersal, while age selected for life-history traits typical of forest habitat specialists. Isolated and/or older forest fragments are thus at greater risk of local species and functional extinctions, and hence making these forest fragments particularly vulnerable to future global changes.  相似文献   

13.
Context

Human appropriation of net primary productivity (HANPP) is employed as a measure of human pressures on biodiversity, though largely at global and national scales rather than landscape to regional scales where many conservation decisions take place. Though gaining in familiarity, HANPP is not widely utilized by conservation professionals.

Objectives

This study, encompassing the US side of the Great Lakes basin, examines how regional distributions of HANPP relate to landscape-based biodiversity proxy metrics used by conservation professionals. Our objectives were (1) to quantify the HANPP of managed lands at the county scale; and (2) to assess spatial patterns of HANPP in comparison to landscape diversity and local habitat connectedness to determine if the metric can provide useful information to conservation professionals.

Methods

We aggregated forest and cropland NPP data between 2005 and 2015 and coupled it with previously published potential vegetation maps to quantify the HANPP of each county in the study region. We mapped the outputs at 500 m resolution to analyze spatial relationships between HANPP and landscape metrics of biodiversity potential.

Results

Area-weighted HANPP across our study region averaged 45% of NPP, down to 4.9% in forest-dominated counties. Greater HANPP correlated with reduced landscape diversity (p?<?0.001, r2?=?0.28) and reduced local habitat connectedness (p?<?0.001, r2?=?0.36).

Conclusion

HANPP could be used as an additional tool for conservation professionals during regional-scale land use planning or conservation decision-making, particularly in mixed-use landscapes that both support important biodiversity and have high levels of primary production harvest.

  相似文献   

14.
Logging significantly reduces the proportion of late-seral stands in managed boreal landscapes. Availability of habitat elements typical of these stand types, such as standing dead wood, decreases, and dependant species may have their abundance reduced or become locally extirpated, potentially affecting the ecosystem processes/services in which they take part. We evaluated the impact of habitat loss on saprophagous wood-boring beetles (Coleoptera: Cerambycidae) in an aspen-dominated landscape intensively logged for the past 30 years. Sixty natural snags of middle decay class were chosen along a gradient of habitat loss and disturbance age, cut down and dissected for beetle larvae. We then assessed relationships between species occurrence and percentage of residual cover and age of disturbance at spatial scales ranging from 40 to 2000 m radii. The most common species, Anthophylax attenuatus, showed no response, being abundant regardless of the intensity of habitat loss. The second most common species, Bellamira scalaris, showed a negative response, especially in sites which had been fragmented for a longer time. A third species, Trachysida mutabilis, showed an inverse trend, having a higher probability of presence where habitat loss was more severe. Our study shows that some saprophagous wood-borers do react negatively to habitat loss, but that within a relatively homogenous group the response can vary significantly between species. Saprophagous wood-borers should be considered potentially sensitive to habitat loss, and their response to fragmentation remains to be evaluated on a longer time frame.  相似文献   

15.
The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We estimated bird richness over a 5-year period (1994–1998) from 29 Breeding Bird Survey locations. Estimated bird richness was modeled as a function of landscape structure surrounding survey routes using satellite-based imagery (1996) and grasshopper density and richness, a potentially important prey of grassland birds. Model specification progressed from simple to complex explanations for spatial variation in bird richness. An information-theoretic approach was used to rank and select candidate models. Our best model included measurements of habitat amount, habitat arrangement, landscape matrix, and prey diversity. Grassland bird richness was positively associated with grassland habitat; was negatively associated with habitat dispersion; positively associated with edge habitats; negatively associated with landscape matrix attributes that may restrict movement of grassland bird; and positively related to grasshopper richness. Collectively, 62% of the spatial variation in grassland bird richness was accounted for by the model (adj-R2 = 0.514). These results suggest that the distribution of grassland bird species is influenced by a complex mixture of factors that include habitat area affects, landscape pattern and composition, and the availability of prey.  相似文献   

16.
Gamboa-Badilla  Nancy  Segura  Alfonso  Bagaria  Guillem  Basnou  Corina  Pino  Joan 《Landscape Ecology》2020,35(12):2745-2757
Context

It is known that land-use and land-cover (LULC) changes affect plant community assembly for decades. However, both the short- and the long-term effects of contrasting LULC change pathways on this assembly are seldom explored.

Objectives

To assess how LULC change pathways affect woody plant community parameters (i.e. species richness, diversity and evenness) and species’ presence and abundance, compared with environmental factors and neutral processes.

Methods

The study was performed in Mediterranean limestone scrublands in NE Spain. Cover of each woody species was recorded in 150 scrubland plots belonging to five LULC change pathways along the past century, identified using land-cover maps and fieldwork. For each plot, total woody and herbaceous vegetation cover, local environmental variables and geographical position were recorded. Effects of these pathways and factors on plant community parameters and on species presence and abundance were assessed, considering spatial effects potentially associated to neutral processes.

Results

Species richness and diversity were associated with LULC change pathways and elevation, while evenness was only associated with this last. Pathways and environmental variables explained similar variance in both species’ presence and cover. In general, while community parameters were affected by recent-past (1956) use, species presence and abundance were associated with far-past (pre-1900) cropping. No relevant spatial effect was detected for any studied factor.

Conclusions

Historical LULC changes and current environmental factors drive local-scale community assembly in Mediterranean scrublands to an equal extent, while contrasting time-scale effects are found at community and species level. Neutral, dispersal-based processes are found to be non-relevant.

  相似文献   

17.
Ekroos  Johan  Tiainen  Juha  Seimola  Tuomas  Herzon  Irina 《Landscape Ecology》2019,34(2):389-402
Context

The current Common Agricultural Policy (CAP) of the European Union includes three greening measures, which are partly intended to benefit farmland biodiversity. However, the relative biodiversity effects of the greening measures, including joint effects of landscape context, are not well understood.

Objectives

We studied the effects of increasing crop diversity, proportions of production grasslands and fallows, corresponding to CAP greening measures, on open farmland bird diversity, whilst controlling for the effects of distance to forests, field edge density and proportion of built-up areas.

Methods

We surveyed open farmland birds using territory mapping in Southern Finland. We modelled effects of greening measures and landscape structure on farmland birds (7642 territories) using generalised linear mixed models.

Results

Increasing proportions of grasslands increased farmland bird species richness and diversity in open farmland, whereas increasing proportions of fallows increased bird diversity. Increasing crop diversity benefited individual species, but not species richness or diversity. Increasing field edge densities consistently increased the species richness of all farmland species, in-field nesters and non-crop nesters, as well as total farmland bird diversity. The relative effect of edge density was much stronger compared to the three greening measures.

Conclusions

Our results show that promoting fallows and grasslands, in particular grazed grasslands and various types of semi-natural grasslands, has the highest potential to benefit farmland bird diversity. Maintaining or increasing field edge densities, currently not supported, seems to be of even more benefit. In open farmland, with little or no field edges, fallows and grasslands are particularly beneficial.

  相似文献   

18.

Context

Loss and fragmentation of semi-natural grasslands has critically affected many butterfly species in Europe. Habitat area and isolation can have strong effects on the local biodiversity but species may also be strongly affected by the surrounding matrix.

Objectives

We explored how different land cover types in the landscape explained the occurrence of butterfly species in semi-natural grasslands.

Methods

Using data from 476 semi-natural grasslands in Sweden, we analysed the effect of matrix composition on species richness and occurrence. Additionally, we analysed at which spatial scales butterflies responded to matrix types (forests, semi-natural grasslands, arable land and water).

Results

Forest cover showed the strongest positive effect on species richness, followed by semi-natural grasslands. Forest also had a positive effect on red-listed species at local scales. Responses to matrix composition were highly species-specific. The majority of the 30 most common species showed strong positive responses to the amount of forest cover within 200–500 m. There was a smaller group of species showing a positive response to arable land cover within 500–2000 m. Thirteen species showed positive responses to the amount of semi-natural grasslands, generally at larger scales (10–30 km).

Conclusions

Our study showed that surrounding forest is beneficial for many grassland butterfly species and that forests might mitigate the negative effects of habitat loss caused by agricultural intensification. Also, semi-natural grasslands were an important factor for species richness at larger spatial scales, indicating that a landscape consisting mainly of supporting habitats (i.e. forests) are insufficient to sustain a rich butterfly fauna.
  相似文献   

19.
Despite good theoretical knowledge about determinants of plant species richness in mosaic landscapes, validations based on complete surveys are scarce. We conducted a case study in a highly fragmented, traditional agricultural landscape. In 199 patches of 20 representative multi-patch-plots (MPPs, 1 ha) we recorded a total of 371 plant species. In addition to an additive partitioning of species diversity at the (a) patch- and (b) MPP-scale, we adopted the recently proposed ‘specificity’ measure to quantify the contribution of a spatial subunit to landscape species richness (subunit-to-landscape-contribution, SLC). SLC-values were calculated at both scales with respect to various spatial extents. General regression models were used to quantify the relative importance of hypothesis-driven determinants for species richness and SLC-values. At the patch scale, habitat type was the main determinant of species richness, followed by area and elongated shape. For SLC-values, area was more important than habitat type, and its relevance increased with the extent of the considered landscape. Influences of elongated shape and vegetation context were minor. Differences between habitat types were pronounced for species richness and also partly scale-dependent for SLC-values. Relevant predictors at the MPP-scale were nonlinear habitat richness, the gradient from anthropogenic to seminatural vegetation, and the proportions of natural vegetation and rare habitats. Linear elements and habitat configuration did not contribute to species richness and SLC. Results at the MPP-scale were in complete accordance with the predictions of the mosaic concept. Hence, our study represents its first empirical validation for plant species diversity in mosaic landscapes.  相似文献   

20.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号