首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Koi carp and goldfish value increases with intensity of skin colour, which is an important quality criterion. Fish cannot fully synthesize their own carotenoid colourings and these must therefore be included in their diet. Two trials were undertaken to investigate skin colour enhancement in ornamental species (i.e. three chromatic varieties of koi carp (Cyprinus carpio), namely Kawari (red), Showa (black and red) and Bekko (black and white) and goldfish (Carassius auratus)) by feeding a dietary carotenoid supplement of freshwater microalgal biomass [Chlorella vulgaris, Haematococcus pluvialis, and also the cyanobacterium Arthrospira maxima (Spirulina)], using a diet containing synthetic astaxanthin and a control diet with no colouring added for comparison. In the first trial, five homogeneous duplicate groups of 25 juvenile koi carp (C. carpio) (initial mean body weight 24.6 ± 0.7 g) were fed, for 10 weeks, one of the four diets containing 80 mg colouring/kg diet. In the second trial, this procedure was repeated for five homogeneous duplicate groups of 25 goldfish (C. auratus) (initial mean body weight of 0.9 ± 0.1 g). Initial and final samples of skin along the dorsal fin were withdrawn, from five fish per group, for subsequent analysis of total carotenoid content (spectrophotometric analysis), and red hue (colorimetric analysis, CIE (1976) L* a* b* colour system). Growth and feed efficiency were not significantly different between groups administered by the various dietary treatments. In both trials, dietary carotenoid supplementation increased total skin carotenoid content. The more efficient colouring for koi carps was found to be C. vulgaris biomass, providing both maximum total carotenoid deposition and red hue for the three chromatic koi carp varieties studied, and particularly for the kawari variety. For goldfish the best colouring obtained, as ascertained by total carotenoid content, was also achieved using C. vulgaris biomass, and red hue was maximum when using H. pluvialis biomass.  相似文献   

2.
Two experiments were conducted to evaluate the addition of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in the diets of goldfish, Carassius auratus. The first was designed to investigate the distribution of pigments in different tissues of goldfish and the effect of astaxanthin in the diet. The carotenoid concentration of tissues was not homogenous. The content of pigments in fish caudal fin was the highest followed by those of scales and head. Flesh had the least carotenoid deposition. Fish fed the diet containing 60 mg/kg astaxanthin had increased concentration of pigment in its head (22.6%), scales (45.5%), flesh (31.0%), and fin (21.2%), compared to fish fed basal diet (P < 0.05). Sixty parts per million astaxanthin had no effect on the weight gain and survival rate. High‐performance liquid chromatography analysis showed astaxanthin in its esterified form in goldfish. The second experiment was aimed at determining the dietary level of astaxanthin that improved color of goldfish. Goldfish were fed the same diet supplemented with 0, 10, 20, 40, 60, and 80 mg yeast astaxanthin/kg for 60 d. The deposition of carotenoids in goldfish fed diets supplemented with astaxanthin increased significantly (P < 0.05) after 15 d of feeding compared to that of the fish fed the diet without astaxanthin, but the effect of dosage of astaxanthin in the diets on the color of goldfish was not completely evident until Day 60 (P < 0.05). During the period of 15–45 d, the deposition of pigments in fish did not increase significantly (P > 0.05) in any treatment with the exception of the diet with 40 mg yeast astaxanthin/kg.  相似文献   

3.
This study aimed to evaluate the effect of lutein supplementation on growth, survival and skin pigmentation for goldfish juveniles. Four diets enriched with different carotenoid sources (lutein, astaxanthin, canthaxanthin and a combination of lutein and canthaxanthin) were compared to a control diet without carotenoid supplementation. The carotenoid inclusion level was standardized at 50 mg kg‐1 in all treatments. 240 goldfish juveniles (1.07?0.57 g) were cultivated in 30 aquariums (30L) during 84 days. The experimental design was completely randomized with five treatments and six replicates. The dietary inclusion of carotenoid pigments did not affect the growth and feeding efficiency of goldfish juveniles. Supplementation with lutein presented higher survival values when compared to the other treatments. Astaxanthin and canthaxanthin supplementation increased the concentration of carotenoids on the skin of goldfish juveniles in relation to the control treatment. For the fish fed with the diet containing lutein, the skin pigmentation was as efficient as astaxanthin and canthaxanthin, but did not differ from the control and combined treatment (canthaxanthin + lutein). The lutein supplementation (50 mg kg‐1) improved survival and promoted efficient carotenoid pigmentation on the skin of goldfish juveniles.  相似文献   

4.
Discovering natural carotenoids for colour enhancement and health benefits of fish is important to develop new feed formulations. We have purified natural bixin from achiote seeds and evaluated the effect of colour enhancing and pigmentation in goldfish. Varying levels of bixin‐based diets were prepared with 420 g kg?1 of crude protein and 120 g kg?1 of lipid content. Our results clearly showed that bixin (0.05, 0.10, 0.20 and 0.60 g kg?1) based diets significantly (P < 0.05) enhanced the skin and fin colour at 30 and 60 days compared to diet without bixin. Interestingly, diet which contains 0.20 g kg?1 bixin and commercial feed (with astaxanthin) had similar effect on carotenoid deposition in skin. Moreover, total carotenoid deposition in fin was higher than in skin of all bixin‐containing diets. However, 0.60 g kg?1 bixin‐containing diet had lower specific growth rate (1.01 ± 0.01) and higher feed conversion ratio (2.05 ± 0.19) compared to the control group. The present results demonstrate that achiote bixin can be successfully used as an alternative natural carotenoid source against synthetic astaxanthin in fish feed. Our data indicate that 0.20 g kg?1 is a suitable dietary level of bixin to ensure strong pigmentation, acceptable growth and feed utilization in goldfish.  相似文献   

5.
This study investigated the effectiveness of dietary supplementation of astaxanthin (Ax) from the Haematococcus pluvialis on growth, survival, and pigmentation in Pacific white shrimp. Ten test diets were processed to contain five levels of Ax (25, 50, 75, 100, and 150 mg/kg as fed basis) by adding the natural or synthetic Ax to a basal diet containing no Ax. Each diet and a commercial shrimp feed were fed to four replicate tanks of shrimp (12 shrimp/tank) for 8 wk. Neither the natural nor synthetic Ax affected shrimp growth or survival. After cooking, shrimp fed the diets containing the natural Ax exhibited a strong red color, compared to the light pink color of shrimp fed the remaining diets. Colorimetric readings and Ax content in cooked shrimp demonstrated that the natural esterified Ax had greater pigmentation efficiency than synthetic free Ax (P < 0.05). The Ax contents in shrimp tail muscle demonstrated significant correlation with the levels of dietary Ax. The supplementation level of the natural Ax for optimum pigmentation efficiency is in a range of 75–100 mg/kg diet. The Ax product used in this study contained only a small amount (ca. 5.0%) of other carotenoids, indicating that the high pigmentation efficiency was mainly due to algal esterified Ax.  相似文献   

6.
A feeding experiment was conducted over 9 weeks with seven groups of 30 (fish per group) unpigmented gilthead seabream, Sparus aurata (L. 1875) (initial mean weight = 145.2 ± 12.3 g). Three experimental diets were prepared by adding to a basal diet free of carotenoid (final pigment content of around 40 mg per kg feed): (i) a biomass of the carotenogenic Chlorella vulgaris (Chlorophyta, Volvocales); (ii) a synthetic astaxanthin; and (iii) a mixture (1:1) of microalgal biomass and synthetic astaxanthin. At 3‐week intervals, five fish were sampled from each tank for total carotenoids analysis in skin and muscle. The carotenoid pigments (total amount = 0.4%) identified in the carotenogenic alga were lutein (0.3%), β‐carotene (1.2%), canthaxanthin (36.2%), astaxanthin, free and esterified forms (55.0%), and other pigments (7.3%). Carotenoid pigments were significantly deposited in the four skin zones studied during the feeding trial: the forefront between the eyes, the opercule, along the dorsal fin and in the abdominal area. In the muscle, regardless of the astaxanthin source, the amount of carotenoids measured was very low (less than 1 mg kg?1) and differences not significant. Moreover, no muscle pigmentation was evident, and there was no variation in the amount of carotenoid analysed in skin tissue, through the trial, for each treatment. It was concluded that supplementing the feed with C. vulgaris would be an acceptable practice in aquaculture to improve the market appeal of the gilthead seabream.  相似文献   

7.
We investigated the effects of dried fairy shrimp Streptocephalus sirindhornae meal (FS) on skin pigmentation and carotenoid deposition in flowerhorn cichlid. Six experimental diets including three treatments of FS at 10% (FS10), 20% (FS20) and 30% (FS30), two dried Spirulina sp. meal (SP) at 6% (SP6) and 12% (SP12), and a control diet (a basal diet without FS or SP) were offered for 90 days. The results demonstrate an increase in the flowerhorn cichlid skin pigmentation from alternative carotenoid feeding. Fish fed the FS diet displayed higher ( 0.05) chroma and redness values than those fed with a SP diet. The hue value (measure for skin pigmentation) was high when fish were fed with FS20 for 30 and 60 days ( 0.01). However, fish also showed high hue values when fed for 90 days with FS10 ( 0.01). The FS20 treatment gave better results than other treatments in terms of total carotenoid, canthaxanthin, astaxanthin and β‐carotene concentration in the skin and musculature. The optimum level of FS in flowerhorn cichlid diets for achieving the highest skin pigmentation was 20%.  相似文献   

8.
Pigmentation enhancement in cultured red sea bream, Chrysophrys major, was investigated using Antarctic krill, Euphausia superba, and a mysid, Neomysis sp., as a source of astaxanthin. Diets fortified with processed Antarctic krill (krill meal) and its acetone extract, containing 0.82–4.92 mg carotenoids/100 g dry weight, and raw krill and raw mysid supplemented diets, containing about 2.00 mg carotenoids/100 g wet weight, were formulated and tested for carotenoid deposition. The rate of carotenoid deposition in fish fed with raw krill and raw mysid was significantly higher and resulted in distinct pigmentation. The groups fed with the krill meal and acetone extract diets showed varied concentrations of skin carotenoids and resulted in faint pigmentation. Pigmented fish then fed on a carotenoid-free diet for the same length of time showed no apparent differences in the skin pigmentation although the detectable amounts of carotenoids varied. The bream converted some of the dietary astaxanthin to skin tunaxanthin.  相似文献   

9.
ABSTRACT

The present study was conducted to evaluate growth performance and color enhancement of goldfish, Carassius auratus, fed diets containing 0, 50, 100, 200, and 250 mg kg?1 diet of annatto dye (AD) for 60 days. The survival rate was significantly higher in fish fed 100, 200, and 250 mg AD kg?1 diet over than these fed control and 50 mg AD kg?1 diet (p < 0.05). AD significantly (p <0 .05) increased the pigmentation in the skin and caudal fin of goldfish in a concentration dependent manner (R2 = 0.995, 0.997). The highest amount of total carotenoid deposition in fish skin and fins were given by diets containing 200–250 mg AD kg?1 diet. The highest redness (a*) of 43.21 and yellowness (b*) of 12.53 were obtained by 250 and 50 mg AD kg?1, respectively. The present results show that AD can be successfully used as an alternative natural carotenoid source in goldfish diets at levels of 200–250 mg AD kg?1 diet.  相似文献   

10.
Rainbow trout with an average initial weight of 160 g were fed during 42 days diets containing varied keto‐carotenoids astaxanthin (Ax)/canthaxanthin (Cx) ratio, as follows: Ax 100% : Cx 0%; Ax 75% : Cx 25%; Ax 50% : Cx 50%; Ax 25% : Cx 75% and Ax 0% : Cx 100%. Muscle colour and carotenoid muscle retention were studied. Colour parameter values for mixed astaxanthin–canthaxanthin‐fed fish were intermediate between those obtained for Ax 0% : Cx 100% fed fish group and for Ax 100% : Cx 0% fed fish group. Concerning muscle carotenoid retention, it has been observed that as the level of canthaxanthin in diet increased, the muscle total carotenoid retention decreased. In the mean time, as the level of canthaxanthin in diet increased, the muscle astaxanthin retention decreased while that of canthaxanthin increased. The results reported here provide further evidence of non‐beneficial effects in terms of muscle colour and muscle carotenoid retention of the use of varying dietary astaxanthin/canthaxanthin ratio for feeding rainbow trout compared to values obtained for astaxanthin‐only feed.  相似文献   

11.
A single‐factor experiment was conducted to investigate the effects of dietary astaxanthin concentration on the skin colour of snapper. Snapper (mean weight=129 g) were held in white cages and fed one of seven dietary levels of unesterified astaxanthin (0, 13, 26, 39, 52, 65 or 78 mg astaxanthin kg?1) for 63 days. Treatments comprised four replicate cages, each containing five fish. The skin colour of all fish was quantified using the CIE L*, a*, b* colour scale after 21, 42 and 63 days. In addition, total carotenoid concentrations of the skin of two fish cage?1 were determined after 63 days. Supplementing diets with astaxanthin strongly affected redness (a*) and yellowness (b*) values of the skin at all sampling times. After 21 days, the a* values increased linearly as the dietary astaxanthin concentration was increased before a plateau was attained between 39 and 78 mg kg?1. The b* values similarly increased above basal levels in all astaxanthin diets. By 42 days, a* and b* values increased in magnitude while a plateau remained between 39 and 78 mg kg?1. After 63 days, there were no further increases in measured colour values, suggesting that maximum pigmentation was imparted in the skin of snapper fed diets >39 mg kg?1 after 42 days. Similarly, there were no differences in total carotenoid concentrations of the skin of snapper fed diets >39 mg kg?1 after 63 days. The plateaus that occurred in a* and b* values, while still increasing in magnitude between 21 and 42 days, indicate that the rate of astaxanthin deposition in snapper is limited and astaxanthin in diets containing >39 mg astaxanthin kg?1 is not efficiently utilized. Astaxanthin retention after 63 days was greatest from the 13 mg kg?1 diet; however, skin pigmentation was not adequate. An astaxanthin concentration of 39 mg kg?1 provided the second greatest retention in the skin while obtaining maximum pigmentation. To efficiently maximize skin pigmentation, snapper growers should commence feeding diets containing a minimum of 39 mg unesterified astaxanthin kg?1 at least 42 days before sale.  相似文献   

12.
The optimal concentration of a panel of individual and combined carotenoid sources on skin pigmentation in fancy carp was investigated by nine experimental diets that were formulated and supplemented with astaxanthin at 25 mg kg?1, lutein at 25 and 50 mg kg?1, β‐carotene at 25, 50 and 75 mg kg?1, and lutein combined with β‐carotene at 25 : 25 and 50 : 50 mg kg?1, while a diet without supplemented carotenoid served as a control. The results showed that serum TC of fish fed diets containing supplemented with lutein plus β‐carotene at 25 : 25; 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet were higher than the other treatments (P ≤ 0.05). Serum TC of the respective treatments was 6.2 ± 2.0, 7.8 ± 3.3 and 7.3 ± 1.9 μg mL?1 serum, respectively. Fish fed diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet had serum astaxanthin concentrations similar to fish fed the diet with astaxanthin alone at 25 mg kg?1. Serum astaxanthin concentrations was 0.7 ± 0.01, 0.9 ± 0.01, 0.4 ± 0.02 and 1.7 ± 0.18 μg mL?1 serum, respectively. The chromaticity of fish body skin of red and white position was assessed by colourimetry using the CIE L*a*b (CIELAB) system. Pigmentation response of skin redness of fancy carp fed with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were higher than other treatments (P ≤ 0.05) but they were similar to fish fed with 25 mg kg?1 astaxanthin diet. The redness (a* values) of fish fed diets with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were 28.3 ± 0.53, 29.9 ± 1.38, 28.8 ± 3.95 and 28.5 ± 2.49, respectively. After 3 weeks of feeding the experimental diets, the fish fed on a diet without carotenoid supplement for one week demonstrated that the same three groups still retained their redness and had an overall tendency to improve skin colouring. Finally, concentrations 50 mg kg?1 of lutein, or the combination of lutein and β‐carotene at 25 : 25 mg kg?1 showed the highest efficiency for improving skin pigmentation and redness of skin.  相似文献   

13.
Effect of Astaxanthin on the Pigmentation of Goldfish Carassius auratus   总被引:1,自引:0,他引:1  
The optimal dosage of astaxanthin for goldfish Carassius auratus was determined by feeding a series of diets containing 0, 25, 50, 75, and 100 mg of astaxanthin/kg of diet for 4 wk. The pigmentation on fish skin was measured by visual assessment against a color chart and by counting chromatophores produced in the dermis layer of fish skin. Both criteria showed that 36–37 mg/kg astaxanthin was the optimal dosage to stimulate fish color. A 4-wk observation after this experiment demonstrated that fish color stimulated by dietary astaxanthin was stable in its intensity. Therefore feeding astaxanthin could be a suitable way for goldfish producers to stimulate color among fish grown in an algae-free environment. The survival rate of fish fed diets with astaxanthin was significantly higher than fish fed diets without astaxanthin. However, there was no significant effect of astaxanthin on fish weight gain.  相似文献   

14.
This study evaluated the effects of diets containing 20, 40, 60, 80 and 100 mg kg?1 diet astaxanthin or canthaxanthin on Pethia conchonius (Hamilton, 1822) pigmentation. A completely randomized experimental design was developed with ten treatments and three replicates. Three hundred rosy barb with a mean weight of 0.92 ± 0.06 g were assigned to thirty aquaria for period of eight weeks. Carotenoid contents of fish fed canthaxanthin were always lower than those fed astaxanthin. Yellowness (b*) was not affected by pigments. While Luminosity (L*) decreased in fish fed astaxanthin diets, this parameter increased by feeding on canthaxanthin. The most pronounced effect was higher a* values in fish fed astaxanthin. Astaxanthin retention rate was higher than that of canthaxanthin. The present results demonstrate that canthaxanthin cannot be considered as a proper replacement with astaxanthin. Inclusion of 80 and 100 mg astaxanthin kg?1 diet can be suitable dietary levels to ensure pigmentation and this condition may improve market value of rosy barb.  相似文献   

15.
Three 2‐factor experiments were conducted to determine the effects of background colour and synthetic carotenoids on the skin colour of Australian snapper Pagrus auratus. Initially, we evaluated the effects on skin colour of supplementing diets for 50 days with 60 mg kg?1 of either astaxanthin (LP; Lucantin® Pink), canthaxanthin (LR; Lucantin® Red), apocarotenoic acid ethyl ester (LY; Lucantin® Yellow), selected combinations of the above or no carotenoids and holding snapper (mean weight=88 g) in either white or black cages. In a second experiment, all snapper (mean weight=142 g) from Experiment 1 were transferred from black to white, or white to white cages to measure the short‐term effects of cage colour on skin L*, a* and b* colour values. Skin colour was measured after 7 and 14 days, and total carotenoid concentrations were determined after 14 days. Cage colour was the dominant factor affecting the skin lightness of snapper with fish from white cages much lighter than fish from black cages. Diets containing astaxanthin conferred greatest skin pigmentation and there were no differences in redness (a*) and yellowness (b*) values between snapper fed 30 or 60 mg astaxanthin kg?1. Snapper fed astaxanthin in white cages displayed greater skin yellowness than those in black cages. Transferring snapper from black to white cages increased skin lightness but was not as effective as growing snapper in white cages for the entire duration. Snapper fed astaxanthin diets and transferred from black to white cages were less yellow than those transferred from white to white cages despite the improvement in skin lightness (L*), and the total carotenoid concentration of the skin of fish fed astaxanthin diets was lower in white cages. Diets containing canthaxanthin led to a low level of deposition in the skin while apocarotenoic acid ethyl ester did not alter total skin carotenoid content or skin colour values in snapper. In a third experiment, we examined the effects of dietary astaxanthin (diets had 60 mg astaxanthin kg?1 or no added carotenoids) and cage colour (black, white, red or blue) on skin colour of snapper (mean weight=88 g) after 50 days. Snapper fed the astaxanthin diet were more yellow when held in red or white cages compared with fish held in black or blue cages despite similar feed intake and growth. The skin lightness (L* values) was correlated with cage L* values, with the lightest fish obtained from white cages. The results of this study suggest that snapper should be fed 30 mg astaxanthin kg?1 in white cages for 50 days to increase lightness and the red colouration prized in Australian markets.  相似文献   

16.
A 10‐week feeding trial was conducted to evaluate the effect of dietary vitamin E and astaxanthin on growth performance, skin colour and antioxidative capacity of large yellow croaker Larimichthys crocea. Six practical diets were formulated in a 2 × 3 factorial design to supplement with two levels of astaxanthin (25 and 50 mg/kg) and three levels of vitamin E (0, 120 and 800 mg/kg). The results showed that both the highest final body weight and specific growth rate were found in fish fed diets with 120 mg/kg vitamin E supplementation. No significant differences were found in survival rate, feed conversion ratio and protein efficiency ratio among all the treatments (> .05). Skin lightness (L*) was not significantly affected by dietary treatments (> .05). Ventral skin redness (a*) of fish fed diet with 25 mg/kg astaxanthin and 0 mg/kg vitamin E supplementation was significantly lower than that of fish fed with other diets. Yellowness (b*) and carotenoid contents both in the dorsal and in the ventral skin were found to be significantly increased with increasing dietary astaxanthin or vitamin E (< .05), but no significant interactions were found (> .05). The vitamin E content in liver reflected the dietary vitamin E content. Level of vitamin E content in fish fed diets with 800 mg/kg vitamin E supplementation was significantly higher than that in fish fed with the other diets (< .05). Liver superoxide dismutase activity and thiobarbituric acid reactive substance levels were found to be decreased with increasing dietary astaxanthin and vitamin E levels, respectively. Levels of reduced glutathione in the liver were found to be increased with increasing dietary vitamin E contents. The total antioxidative capacity in the liver was found to be decreased with increasing dietary vitamin E or astaxanthin contents. In conclusion, adequate dietary vitamin E can improve the growth of large yellow croaker, and the supplementation of astaxanthin and vitamin E benefited the skin coloration and antioxidative capacity of large yellow croaker.  相似文献   

17.
A 56‐day feeding trial was done to investigate the interactive effects of astaxanthin (Ax) and vitamin E (α‐Toc) on the performance of kuruma shrimp (Marsupenaeus japonicus). A 2 × 3 factorial experiment was conducted with six experimental diets containing two levels of Ax (0 and 0.6 g/kg diet [Ax0 and Ax0.6]) and three levels of α‐Toc (0, 0.2 and 1 g/kg diet [α‐Toc0, α‐Toc0.2 and α‐Toc1]). The results indicated that growth performance was significantly (p < 0.05) increased in shrimp fed with the Ax0.6 × α‐Toc0.2 diet. Interactive effects between Ax and α‐Toc on the growth parameters were observed. Furthermore, pigmentation performance was significantly (p < 0.05) better in the Ax0.6 groups. Interaction between Ax and α‐Toc was also found in the Ax content of shrimp body parts. Interestingly, dietary α‐Toc helped to reduce the Ax consumption rate, promote the absorption and increase the deposition of Ax in the muscle. Shrimps from the Ax0.6 groups showed significantly (p < 0.05) improved hepatopancreatic digestive enzyme activities compared with those of the Ax0 groups. Although no interactive (p > 0.05) effects were found between dietary α‐Toc and Ax on total haemocyte count and tolerance against freshwater, dietary Ax and α‐Toc supplementation showed better performance on these two parameters. It was concluded that dietary Ax and α‐Toc functioned synergistically, and the shrimp fed with the diet containing 0.6 g Ax/kg diet Ax and 0.2 g α‐Toc/kg diet showed improved growth and pigmentation performance compared with the other groups in the current study.  相似文献   

18.
A feeding experiment was carried out to determine the efficiency of different commercial sources, chemical forms and levels, of dietary astaxanthin, to appropriately pigment the red porgy (Pagrus pagrus) skin. According to this, total carotenoid content, profiles and chemical forms present in the skin were determined. In order to establish the potential for antioxidant protecting role of astaxanthin supplemented diets, peroxide levels and lipid composition of skin were also determined.

Red porgy alevins were fed six dietary treatments in triplicate; a basal diet (B) without carotenoids; two diets (N25 and N50) formulated to supply either 25 or 50 mg kg− 1 of an esterified source of astaxanthin (Haematococcus pluvialis, NatuRose™); two diets (CP25 and CP50) with either 25 or 50 mg kg− 1 of unesterified astaxanthin (Carophyll® Pink); and a positive control diet (B + S) proved as a successful pigmenting-diet in previous experiences (B + S, 88% basal diet:12% frozen shrimp) [Cejas, J., Almansa, E., Tejera, N., Jerez, S., Bolaños, A., Lorenzo, A., 2003. Effect of dietary supplementation with shrimp on skin pigmentation and lipid composition of red porgy (P. pagrus) alevins. Aquaculture 218, 457–469].

All fish fed carotenoid supplemented diets displayed a pink-coloured skin after 4 months of feeding in contrast to the greyish appearance displayed by fish fed the basal diet not supplemented with carotenoids (B). Furthermore, astaxanthin diesters were the major carotenoid in the skin of pink fish. A second carotenoid, tentatively identified as tunaxanthin diester, was also detected. The best results in terms of skin natural reddish hue, total carotenoid and astaxanthin contents were found by using the esterified forms of dietary astaxanthin (N25, N50 and B + S). Interestingly, the lowest levels of lipid peroxides were found in the fish fed these three treatments. However, no effect of treatment on lipid composition was found. In conclusion, red porgy alevins are able to efficiently utilise dietary natural or synthetic astaxanthin, and deposit this pigment in its esterified form to acquire an acceptable pink-coloured skin compared to that of the wild fish.  相似文献   


19.
New cultured ornamental fish namely Lake Kurumoi rainbowfish Melanotaenia parva (Allen) run into reduced of colour performances when reared in the aquaria, consequently, fish feed must be added with carotenoids as a pigment source. The aim of this study was to evaluate the digestibility, growth and pigmentation of astaxanthin, canthaxanthin and lutein in diet. Apparent digestibility coefficients (ADC) of dry matter, lipid, protein, carotenoids, growth and pigmentation were studied in twenty fish after 14 and 56 days of observation. The single‐dose supplementation of 100 mg/kg of astaxanthin, canthaxanthin, or lutein diets on fish was fed by apparent satiation. The basal diet without carotenoids was used as control. The result showed that the ADC of carotenoids of test diets was higher compared to control. Fish fed astaxanthin diet had higher survival rate (96.67 ± 2.89%), colour measurements of lightness (57.60 ± 7.46%), a*‐values (4.66 ± 1.20), total carotenoids content in skin (33.75 ± 5.02 mg/kg) and muscle (2.16 ± 0.74 mg/kg). Astaxanthin also increased the growth after 14 days (2.00% ± 0.19%/days) but there was no significantly different at the end of experiment. The yellowish‐orange colour performance was more rapidly achieved by fish fed astaxanthin diet after 28 days experimentation. These values suggested that dietary carotenoids were required and astaxanthin diet was superior to other diets for skin pigmentation of Lake Kurumoi rainbowfish.  相似文献   

20.
This study presents data on the effect of carotenoid sources on skin coloration of red porgy (Pagrus pagrus). Three experiments were conducted: in the first, fish were fed an astaxanthin (Naturose®)‐supplemented diet, while the second fish received diets supplemented with β‐carotene (Rovimix β‐caroten®) or lycopene (Lyc‐O‐Mato®): Carotenoids were added to the level of 100 ppm in each diet, while a non‐carotenoid‐supplemented diet served as a control. In the third experiment, the effect of dietary protein/carbohydrate ratio on melanin content in the skin was investigated. For this experimentation, four diets were formulated to contain 50/23, 40/32, 30/48 and 20/59 protein/carbohydrate ratio. Naturose® astaxanthin increased total carotenoid content in the dorsal skin area while β‐carotene and lycopene seem to have had no significant effect. Naturose® was the only carotenoid source that had a significant effect on skin hue, promoting a reddish coloration to the dorsal skin area and a ventral hue similar to wild red porgy. No apparent effect of carotenoid source on skin melanin content was observed. In contrast, dietary protein/carbohydrate ratio affected melanin content in the skin. The fish fed the 50/23 diet showed significantly higher values. Farmed red porgy had eight times higher dorsal‐skin melanin content than wild ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号