首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three 2‐factor experiments were conducted to determine the effects of background colour and synthetic carotenoids on the skin colour of Australian snapper Pagrus auratus. Initially, we evaluated the effects on skin colour of supplementing diets for 50 days with 60 mg kg?1 of either astaxanthin (LP; Lucantin® Pink), canthaxanthin (LR; Lucantin® Red), apocarotenoic acid ethyl ester (LY; Lucantin® Yellow), selected combinations of the above or no carotenoids and holding snapper (mean weight=88 g) in either white or black cages. In a second experiment, all snapper (mean weight=142 g) from Experiment 1 were transferred from black to white, or white to white cages to measure the short‐term effects of cage colour on skin L*, a* and b* colour values. Skin colour was measured after 7 and 14 days, and total carotenoid concentrations were determined after 14 days. Cage colour was the dominant factor affecting the skin lightness of snapper with fish from white cages much lighter than fish from black cages. Diets containing astaxanthin conferred greatest skin pigmentation and there were no differences in redness (a*) and yellowness (b*) values between snapper fed 30 or 60 mg astaxanthin kg?1. Snapper fed astaxanthin in white cages displayed greater skin yellowness than those in black cages. Transferring snapper from black to white cages increased skin lightness but was not as effective as growing snapper in white cages for the entire duration. Snapper fed astaxanthin diets and transferred from black to white cages were less yellow than those transferred from white to white cages despite the improvement in skin lightness (L*), and the total carotenoid concentration of the skin of fish fed astaxanthin diets was lower in white cages. Diets containing canthaxanthin led to a low level of deposition in the skin while apocarotenoic acid ethyl ester did not alter total skin carotenoid content or skin colour values in snapper. In a third experiment, we examined the effects of dietary astaxanthin (diets had 60 mg astaxanthin kg?1 or no added carotenoids) and cage colour (black, white, red or blue) on skin colour of snapper (mean weight=88 g) after 50 days. Snapper fed the astaxanthin diet were more yellow when held in red or white cages compared with fish held in black or blue cages despite similar feed intake and growth. The skin lightness (L* values) was correlated with cage L* values, with the lightest fish obtained from white cages. The results of this study suggest that snapper should be fed 30 mg astaxanthin kg?1 in white cages for 50 days to increase lightness and the red colouration prized in Australian markets.  相似文献   

2.
Two experiments were conducted with Australian snapper Pagrus auratus (Bloch and Schneider, 1801). The first was aimed at determining the dietary level of astaxanthin that improved skin redness (CIE a*values) of farm‐reared snapper. Farmed snapper (ca. 600 g) fed a commercial diet without carotenoids were moved to indoor tanks and fed the same diet supplemented with 0, 36 or 72 mg astaxanthin kg?1 (unesterified form as Carophyll Pink?) for nine weeks. Skin redness (CIE a* values) continued to decrease over time in fish fed the diet without astaxanthin. Snapper fed the diet containing 72 mg astaxanthin kg?1 were significantly more red than fish fed the diet with 36 mg astaxanthin kg?1 three weeks after feeding, but skin redness was similar in both groups of fish after 6 and 9 weeks. The second experiment was designed to investigate the interactive effects of dietary astaxanthin source (unesterified form as Carophyll Pink? or esterified form as NatuRose?; 60 mg astaxanthin kg?1) and degree of shading (0%, 50% and 95% shading from incident radiation) on skin colour (CIE L*a*b*) and skin and fillet astaxanthin content of farmed snapper (ca. 800 g) held in 1 m3 floating cages. After 116 days, there were no significant interactions between dietary treatment and degree of shading for L*, a* or b* skin colour values or the concentration of astaxanthin in the skin. Negligible amounts of astaxanthin were recovered from fillet samples. The addition of shade covers significantly increased skin lightness (L*), possibly by reducing the effect of melanism in the skin, but there was no difference between the lightness of fish held under either 50% or 95% shade cover (P>0.05).  相似文献   

3.
In an attempt to improve post‐harvest skin colour in cultured Australian snapper Pagrus auratus, a two‐factor experiment was carried out to investigate the effects of a short‐term change in cage colour before harvest, followed by immersion in K+‐enriched solutions of different concentrations. Snapper supplemented with 39 mg unesterified astaxanthin kg?1 for 50 days were transferred to black (for 1 day) or white cages (for 1 or 7 days) before euthanasia by immersing fish in seawater ice slurries supplemented with 0, 150, 300, 450 or 600 mmol L?1 K+ for 1 h. Each treatment was replicated with five snapper (mean weight=838 g) held individually within 0.2 m3 cages. L*, a* and b* skin colour values of all fish were measured after removal from K+ solutions at 0, 3, 6, 12, 24 and 48 h. After immersion in K+ solutions, fish were stored on ice. Both cage colour and K+ concentration significantly affected post‐harvest skin colour (P<0.05), and there was no interaction between these factors at any of the measurement times (P>0.05). Conditioning dark‐coloured snapper in white surroundings for 1 day was sufficient to significantly improve skin lightness (L*) after death. Although there was no difference between skin lightness values for fish held for either 1 or 7 days in white cages at measurement times up to 12 h, fish held in white cages for 7 days had significantly higher L* values (i.e. they were lighter) after 24 and 48 h of storage on ice than those held only in white cages for 1 day. K+ treatment also affected (improved) skin lightness post harvest although not until 24 and 48 h after removal of fish from solutions. Before this time, K+ treatment had no effect on skin lightness. Snapper killed by seawater ice slurry darkened (lower L*) markedly during the first 3 h of storage in contrast with all K+ treatments that prevented darkening. After 24 and 48 h of storage on ice, fish exposed to 450 and 600 mmol L?1 K+ were significantly lighter than fish from seawater ice slurries. In addition, skin redness (a*) and yellowness (b*) were strongly dependent on K+ concentration. The initial decline in response to K+ was overcome by a return of a* and b* values with time, most likely instigated by a redispersal of erythrosomes in skin erythrophores. Fish killed with 0 mmol L?1 K+ maintained the highest a* and b* values after death, but were associated with darker (lower L*) skin colouration. It is concluded that a combination of conditioning snapper in white surroundings for 1 day before harvest, followed by immersion in seawater ice slurries supplemented with 300–450 mmol L?1 K+ improves skin pigmentation after >24 h of storage on ice.  相似文献   

4.
The unnaturally dark pigmentation of cultured Australian snapper Pagrus auratus can be improved through dietary astaxanthin supplementation and by holding fish in tanks with a white background. The practical application of these laboratory‐based findings was examined with two experiments to establish if the advantages of transferring fish to light coloured tanks before harvest could be achieved on‐farm using white cages and to determine the effects of fish density on skin colour. For the first experiment, snapper (mean TL=29.7 cm) were transferred from a commercial snapper sea cage to black or white netted cages and fed diets supplemented with unesterified astaxanthin (supplied as Lucantin® Pink, BASF) at 0 or 39 mg kg?1 for 42 days. Skin colour was measured using the CIE (black–white), (green–red), (blue–yellow) colour scale. Snapper held in white netting cages became significantly lighter (higher ) than snapper held in black cages; however, values were not as high as previous laboratory‐based studies in which snapper were held in white plastic‐lined cages. Snapper fed astaxanthin displayed significantly greater and values, and total carotenoid concentrations after 42 days. In addition, total carotenoids were higher in fish from black than white cages. The second experiment was designed to investigate whether density reduced the improvements in skin colour achieved by holding fish in white coloured cages and whether cage colour affected stress. Snapper (mean weight=435 g) were acclimated to black cages and fed 39 mg kg?1 astaxanthin for 44 days before transferring to black or white plastic‐lined cages at 14 (low), 29 (mid) or 45 (high) kg m?3 for 7 days after which time skin colour, plasma cortisol and plasma glucose concentrations were measured. Skin lightness () was greater in snapper transferred to white plastic‐lined cages with the lightest coloured fish obtained from the lowest density after 7 days. Density had no effect on plasma cortisol or glucose levels after 7 days, although plasma cortisol was elevated in snapper from black cages. For improved skin colouration we recommend feeding unesterified astaxanthin at 39 mg kg?1 for approximately 6 weeks and transferring snapper to white plastic‐lined cages or similar at low densities for short periods before harvest rather than producing fish in white netting sea cages subject to biofouling.  相似文献   

5.
This study evaluated the effects of diets containing 20, 40, 60, 80 and 100 mg kg?1 diet astaxanthin or canthaxanthin on Pethia conchonius (Hamilton, 1822) pigmentation. A completely randomized experimental design was developed with ten treatments and three replicates. Three hundred rosy barb with a mean weight of 0.92 ± 0.06 g were assigned to thirty aquaria for period of eight weeks. Carotenoid contents of fish fed canthaxanthin were always lower than those fed astaxanthin. Yellowness (b*) was not affected by pigments. While Luminosity (L*) decreased in fish fed astaxanthin diets, this parameter increased by feeding on canthaxanthin. The most pronounced effect was higher a* values in fish fed astaxanthin. Astaxanthin retention rate was higher than that of canthaxanthin. The present results demonstrate that canthaxanthin cannot be considered as a proper replacement with astaxanthin. Inclusion of 80 and 100 mg astaxanthin kg?1 diet can be suitable dietary levels to ensure pigmentation and this condition may improve market value of rosy barb.  相似文献   

6.
The optimal concentration of a panel of individual and combined carotenoid sources on skin pigmentation in fancy carp was investigated by nine experimental diets that were formulated and supplemented with astaxanthin at 25 mg kg?1, lutein at 25 and 50 mg kg?1, β‐carotene at 25, 50 and 75 mg kg?1, and lutein combined with β‐carotene at 25 : 25 and 50 : 50 mg kg?1, while a diet without supplemented carotenoid served as a control. The results showed that serum TC of fish fed diets containing supplemented with lutein plus β‐carotene at 25 : 25; 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet were higher than the other treatments (P ≤ 0.05). Serum TC of the respective treatments was 6.2 ± 2.0, 7.8 ± 3.3 and 7.3 ± 1.9 μg mL?1 serum, respectively. Fish fed diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet had serum astaxanthin concentrations similar to fish fed the diet with astaxanthin alone at 25 mg kg?1. Serum astaxanthin concentrations was 0.7 ± 0.01, 0.9 ± 0.01, 0.4 ± 0.02 and 1.7 ± 0.18 μg mL?1 serum, respectively. The chromaticity of fish body skin of red and white position was assessed by colourimetry using the CIE L*a*b (CIELAB) system. Pigmentation response of skin redness of fancy carp fed with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were higher than other treatments (P ≤ 0.05) but they were similar to fish fed with 25 mg kg?1 astaxanthin diet. The redness (a* values) of fish fed diets with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were 28.3 ± 0.53, 29.9 ± 1.38, 28.8 ± 3.95 and 28.5 ± 2.49, respectively. After 3 weeks of feeding the experimental diets, the fish fed on a diet without carotenoid supplement for one week demonstrated that the same three groups still retained their redness and had an overall tendency to improve skin colouring. Finally, concentrations 50 mg kg?1 of lutein, or the combination of lutein and β‐carotene at 25 : 25 mg kg?1 showed the highest efficiency for improving skin pigmentation and redness of skin.  相似文献   

7.
Discovering natural carotenoids for colour enhancement and health benefits of fish is important to develop new feed formulations. We have purified natural bixin from achiote seeds and evaluated the effect of colour enhancing and pigmentation in goldfish. Varying levels of bixin‐based diets were prepared with 420 g kg?1 of crude protein and 120 g kg?1 of lipid content. Our results clearly showed that bixin (0.05, 0.10, 0.20 and 0.60 g kg?1) based diets significantly (P < 0.05) enhanced the skin and fin colour at 30 and 60 days compared to diet without bixin. Interestingly, diet which contains 0.20 g kg?1 bixin and commercial feed (with astaxanthin) had similar effect on carotenoid deposition in skin. Moreover, total carotenoid deposition in fin was higher than in skin of all bixin‐containing diets. However, 0.60 g kg?1 bixin‐containing diet had lower specific growth rate (1.01 ± 0.01) and higher feed conversion ratio (2.05 ± 0.19) compared to the control group. The present results demonstrate that achiote bixin can be successfully used as an alternative natural carotenoid source against synthetic astaxanthin in fish feed. Our data indicate that 0.20 g kg?1 is a suitable dietary level of bixin to ensure strong pigmentation, acceptable growth and feed utilization in goldfish.  相似文献   

8.
A two‐factor experiment was performed to evaluate the effects of cage colour (black or white 0.5 m3 experiment cages) and light environment (natural sunlight or reduced level of natural sunlight) on the skin colour of darkened Australian snapper. Each treatment was replicated four times and each replicate cage was stocked with five snapper (mean weight=351 g). Snapper exposed to natural sunlight were held in experimental cages located in outdoor tanks. An approximately 70% reduction in natural sunlight (measured as PAR) was established by holding snapper in experimental cages that were housed inside a ‘shade‐house’ enclosure. The skin colour of anaesthetized fish was measured at stocking and after a 2‐, 7‐ and 14‐day exposure using a digital chroma‐meter (Minolta CR‐10) that quantified skin colour according to the L*a*b* colour space. At the conclusion of the experiment, fish were killed in salt water ice slurry and post‐mortem skin colour was quantified after 0.75, 6 and 22 h respectively. In addition to these trials, an ad hoc market appraisal of chilled snapper (mean weight=409 g) that had been held in either white or in black cages was conducted at two local fish markets. Irrespective of the sampling time, skin lightness (L*) was significantly affected by cage colour (P<0.05), with fish in white cages having much higher L* values (L*≈64) than fish held in black cages (L*≈49). However, the value of L* was not significantly affected by the light environment or the interaction between cage colour and the light environment. In general, the L* values of anaesthetized snapper were sustained post mortem, but there were linear reductions in the a* (red) and b* (yellow) skin colour values of chilled snapper over time. According to the commercial buyers interviewed, chilled snapper that had been reared for a short period of time in white cages could demand a premium of 10–50% above the prices paid for similar‐sized snapper reared in black cages. Our results demonstrate that short‐term use of white cages can reduce the dark skin colour of farmed snapper, potentially improving the profitability of snapper farming.  相似文献   

9.
The aim of this work was to investigate the effect of different carotenoid sources/concentrations and temperature on goldfish (Carassius auratus) skin pigmentation. In the first trial (trial A), the effect of carotenoid source (natural – microalgae Chlorella vulgaris and synthetic – Carophyll Pink) and carotenoid concentration (45, 80 and 120 mg pigment kg?1 diet) was tested. Six homogeneous duplicate groups of juvenile goldfish (7.4 g) were fed, for 5 weeks, one of the diets containing 45, 80 or 120 mg of total pigments of C. vulgaris biomass or synthetic astaxanthin per kg of diet (Cv45, Cv80, Cv120, Ax45, Ax80, Ax120), respectively. In trial B, the effect of water temperature on skin pigmentation was studied. Five homogeneous duplicate groups of 25 goldfish each (5.2 g) were fed diet Ax45 over 9 weeks, to test the following temperatures: 22, 24, 26, 28 and 30 °C. At the end of both trials, samples of skin along the dorsal fin were withdrawn for subsequent analysis of total carotenoid content, intensity of colour, red and yellow hue and visual observation. The best carotenoid concentrations were achieved with astaxanthin diets. There was a tendency to an overall improvement of colour parameters (L and b) in fish fed diets with high levels of C. vulgaris. The results indicated that the best temperature range to maximize skin pigmentation was 26–30 °C.  相似文献   

10.
To assess the effects of dietary astaxanthin on the growth and body colour of red discus fish (Symphysodon spp.), synthetic astaxanthin was added into the basal diet (beef heart hamburger) with the levels of 0 (control diet), 50, 100, 200, 300 and 400 mg kg?1 respectively. The six experimental diets were fed to discus fish with an initial body weight of 10.3 ± 0.8 g for 8 weeks. The results showed that the supplementation of 50–200 mg kg?1 astaxanthin had no significant effects on growth performance of discus fish, but the high supplementation of astaxanthin (300 or 400 mg kg?1) significantly reduced the weight gain and increased the feed coefficient ratio (< 0.05). After 4 or 8 weeks of feeding, the L* (lightness) values in astaxanthin‐supplemented groups were significantly lower, while a* (redness), b* (yellowness) and skin astaxanthin contents were significantly higher than the control group (< 0.05). When the astaxanthin supplementation reached 200 mg kg?1, skin redness and astaxanthin contents remained relatively stable. When b* was relatively stable, the supplemental astaxanthin was 300 (4 weeks) and 50 mg kg?1 (8 weeks) respectively. With the supplemental astaxanthin increasing, the astaxanthin retention rate significantly decreased and hepatic total antioxidant capacity was strengthened. The dietary astaxanthin also significantly increased the reduced glutathione level (< 0.05) when the astaxanthin inclusion was higher than 50 mg kg?1. The above results showed that dietary astaxanthin could effectively improve the skin pigmentation of red discus fish in 4 weeks and the supplementation level was suggested to be 200 mg kg?1.  相似文献   

11.
Assessment of flesh colour in Atlantic salmon, Salmo salar L.   总被引:1,自引:0,他引:1  
The degree of pigmentation in muscle of Atlantic salmon, Salmo salar L., fillets of fish that were fed eight diets fortified with 10, 20, 40, 60, 80.100, 150 and 200 mg astaxanthin kg?1 and a non-supplemented control diet from 3 to 21 months was assessed using different methods. A tristimulus colorimeter (Minolta Chroma Meter) was used to measure the colour composition of the fillets instrumentally. The colour was also determined using the Roche Colour Card for Salmonids. The concentration of astaxanthin in the muscle was measured by chemical analyses. All measurements for colour were done directly on the epaxial muscle anterior to the dorsal fin. The lightness factor (L *). the red/green chromaticity (a*), the yellow/blue chromaticity (b*) and the saturation C* of the colorimetric readings and the Colour Card scores were compared with the chemical analyses. The astaxanthin concentration in the flesh varied from 1 to 10 mg kg?1 and the visual appearance of the fillets varied from yellowish-white to red. The relationship between the a*, b* and C* values and the astaxanthin concentration in the muscle was non-linear. Non-linear regression lines were found between the a* value and the astaxanthin concentration in the flesh (r2= 0.974) and the b* value and the astaxanthin concentration in the flesh (r2= 0.984). The instrument was not able to detect differences in astaxanthin concentration at astaxanthin levels above 3-4 mg kg?1 using the presented method directly on the fillet. The instrument might be useful for rejecting groups of salmon with poor pigmentation. A good linear regression was found between the Colour Card score and the mean astaxanthin concentration in the flesh (r2 - 0.992). The Colour Card provided a better prediction of the astaxanthin concentration at higher astaxanthin levels than the Chroma Meter. None of the methods provided a satisfactory prediction of the astaxanthin concentration in the muscle of individual fish using the presented methods.  相似文献   

12.
A 61‐day experiment was carried out to investigate the effect of dietary oxidized fish oil on growth performance and skin colour of Chinese longsnout catfish (Leiocassis longirostris Günther). Seven diets (Diet 1–7) containing different levels of oxidized fish oil (0, 10, 20, 30, 40, 50 and 60 g kg?1 dry diet) were evaluated at same dietary lipid level (60 g kg?1 diet). Fish skin colour (CIE L*a*b*) and melanin content was measured at three zones of fish body: back (Zone I), belly (Zone II) and tail (Zone III). The results showed that there were no significant differences in growth or feed utilization. Apparent digestibility coefficient of energy (ADCe) decreased while those of dry matter (ADCd), protein (ADCp) or lipid (ADCl) were not affected. Lightness (L*) of Zone I or II were not influenced while L* of Zone III decreased. Oxidized oil increased melanin content of Zone III. No apparent effects on the thiobarbituric acid reactive substances (TBARS) values of blood serum, liver and muscle were observed. In conclusion, dietary oil oxidation did not affect fish growth performance. Fish tail skin lightness was lower in the fish fed with high dietary oxidized fish oil and was positively correlated to melanin content.  相似文献   

13.
The aim of this work was to evaluate the effects of Haematococcus pluvialis (H. pluvialis) (carotenoid source) and H. pluvialis plus soy lecithin on development, carotenoid content, and pigmentation of shrimp (Litopenaeus vannamei). One hundred and eighty shrimps (7.8 g) were divided in six tanks (n = 30) and fed with control food, H. pluvialis, and H. pluvialis plus soy lecithin for 2 weeks. Carotenoids were extracted with acetone and quantified by UV–vis spectrophotometry, and astaxanthin was determined by high‐performance liquid chromatography. Colour was analysed by colorimetry. Lecithin/H. pluvialis group presented higher survival rate (100%) when compared to control group (93.3%). Haematococcus pluvialis and lecithin/H. pluvialis groups presented higher red‐like colour (a* 16.4 and 19.9) than control (a* 20.6). Lecithin/H. pluvialis group presented higher carotenoids content (8.2 mg kg?1 muscle, 26.8 mg kg?1 exoskeleton) and astaxanthin (8.5 mg kg?1 muscle, 23.3 mg kg?1 exoskeleton) than control (carotenoids: 4.2 mg kg?1 muscle, 12.3 mg kg?1 exoskeleton; astaxanthin: 3.2 mg kg?1 muscle, 8.1 mg kg?1 exoskeleton). Feeding with 60 ppm carotenoids (from H. pluvialis) during 2 weeks was sufficient for favouring red‐like pigmentation in shrimp, and lecithin increased astaxanthin content only in exoskeleton.  相似文献   

14.
Arctic charr Salvelinus alpinus L. averaging 150 g were fed six diets containing from 0 to 192 mg astaxanthin per kilogram dry diet al two temperatures (8 C and 12 C), After reaching an average weight of 320 g (102 days at 12 C and 126 days at 8 C), the fish were killed for evaluation of flesh pigmentation using instrumental colour measurement. There was a positive relationship between dietary astaxanthin and muscle redness up to a dietary concentration of around 70 mg kg-1, where a plateau in pigmentation was reached. Tail sections were more intensely pigmented compared with the neck and dorsal regions. Within each temperature regime, flesh coloration was positively correlated to specific growth rate. Fish maintained at 8 C had significantly higher pigmentation compared to those grown at 12 C.  相似文献   

15.
Atlantic salmon, Salmo salar L., juveniles, with a mean initial weight of 1.75 g, were fed casein-based purified diets which had been supplemented with different levels of astaxanthin for a 10-week period. The astaxanthin content of the diets ranged from 0 to 190 mg kg?1 dry diet. The growth and survival of the juveniles were recorded throughout the experiment. The proximate composition, astaxanthin and vitamin A content were determined from whole-body samples at the start and termination of the experiment. The dietary treatment was found to affect growth significantly (P < 0.05). A reduction in the mean weight of the juveniles was observed in the groups fed the diets without astaxanthin supplementation. There was no difference in growth rate between the fish in the groups fed the diets containing 36 or 190 mg astaxanthin kg?1 dry diet, whereas the fish in the group fed the diet containing 5.3 mg astaxanthin kg?1 dry diet had a lower growth rate. There was a tendency to higher survival in the groups fed the diets containing astaxanthin when compared with the groups fed the non-supplemented diets. The moisture and ash contents were significantly lower and the lipid content was higher in the groups fed the astaxanthin-supplemented diets. The astaxanthin and the vitamin A concentrations in the fish were found to be dependent upon the dietary astaxanthin dose; the highest values were found in the fish fed the diet with the highest astaxanthin content. These results strongly indicate that astaxanthin functions as a provitamin A for juvenile Atlantic salmon. The body storage of vitamin A increased in the fish fed the diets containing astaxanthin. However, the increase was low in the fish fed the diet containing 5.3 mg astaxanthin kg?1 dry diet.  相似文献   

16.
In this study, we have investigated the effects of Porphyridium cruentum (Rodophyta) as a natural pigment source and astaxanthin and β-carotene as synthetic pigment sources on the skin colour of cichlid fish (Cichlasoma severum sp., Heckel 1840), which are generally light orange with white patches and becomes shiny orange in the reproductive phase. The fish were fed diets containing 50 mg kg−1 astaxanthin and β-carotene, and P. cruentum powder. The amount of both natural and synthetic pigment sources given as feed was 50 mg kg−1, and the experiment was continued for 50 days. Total carotenoid content of the fish was determined spectrophotometrically at the end of the experiment. As a result, while a visible change of colour in the skin of the fish fed on the feed containing astaxanthin was observed with 0.34 ± 0.2 mg g−1 of pigment accumulation, a relatively small change of colour was observed in the skin of other fish that were fed on the feed containing P. cruentum and β-carotene with 0.22 ± 0.2 mg g−1 and 0.26 ± 0.1 mg g−1 of pigment accumulations, respectively. Therefore, it was determined that these pigment sources have an effect on the colour of cichlid fish.  相似文献   

17.
New cultured ornamental fish namely Lake Kurumoi rainbowfish Melanotaenia parva (Allen) run into reduced of colour performances when reared in the aquaria, consequently, fish feed must be added with carotenoids as a pigment source. The aim of this study was to evaluate the digestibility, growth and pigmentation of astaxanthin, canthaxanthin and lutein in diet. Apparent digestibility coefficients (ADC) of dry matter, lipid, protein, carotenoids, growth and pigmentation were studied in twenty fish after 14 and 56 days of observation. The single‐dose supplementation of 100 mg/kg of astaxanthin, canthaxanthin, or lutein diets on fish was fed by apparent satiation. The basal diet without carotenoids was used as control. The result showed that the ADC of carotenoids of test diets was higher compared to control. Fish fed astaxanthin diet had higher survival rate (96.67 ± 2.89%), colour measurements of lightness (57.60 ± 7.46%), a*‐values (4.66 ± 1.20), total carotenoids content in skin (33.75 ± 5.02 mg/kg) and muscle (2.16 ± 0.74 mg/kg). Astaxanthin also increased the growth after 14 days (2.00% ± 0.19%/days) but there was no significantly different at the end of experiment. The yellowish‐orange colour performance was more rapidly achieved by fish fed astaxanthin diet after 28 days experimentation. These values suggested that dietary carotenoids were required and astaxanthin diet was superior to other diets for skin pigmentation of Lake Kurumoi rainbowfish.  相似文献   

18.
ABSTRACT

The present study was conducted to evaluate growth performance and color enhancement of goldfish, Carassius auratus, fed diets containing 0, 50, 100, 200, and 250 mg kg?1 diet of annatto dye (AD) for 60 days. The survival rate was significantly higher in fish fed 100, 200, and 250 mg AD kg?1 diet over than these fed control and 50 mg AD kg?1 diet (p < 0.05). AD significantly (p <0 .05) increased the pigmentation in the skin and caudal fin of goldfish in a concentration dependent manner (R2 = 0.995, 0.997). The highest amount of total carotenoid deposition in fish skin and fins were given by diets containing 200–250 mg AD kg?1 diet. The highest redness (a*) of 43.21 and yellowness (b*) of 12.53 were obtained by 250 and 50 mg AD kg?1, respectively. The present results show that AD can be successfully used as an alternative natural carotenoid source in goldfish diets at levels of 200–250 mg AD kg?1 diet.  相似文献   

19.
This study was performed to investigate the effects of 17β‐estradiol (ES) and 17α‐methyltestosterone (MT) on growth, development, survival, sex ratio and colour change in the electric blue hap (Sciaenochromis ahli Trewavas, 1935). The hormones were not supplemented to the control feed, while six other feeds were prepared by adding 20, 40 and 60 mg kg?1 17β‐ES or 20, 40 and 60 mg kg?1 17α‐MT to each, resulting in seven different feed treatments. Average live weight of the fish supplemented with these diets was 0.42 ± 0.04 g. At the end of the study, the highest weight gain was observed in fish fed 60 mg kg?1 17α‐MT group (2.62 ± 0.11 g) and the difference with the groups fed with 17β‐ES was found to be significant. All fish fed 17α‐MT were male, while the rates of feminization in fish fed 17β‐ES at 20, 40, 60 mg kg?1 were 91.11%, 88.88% and 93.33% respectively. Survival rates were respectively determined as 80%, 95.56%, 84.44%, 93.33%, 77.78%, 84.44% and 84.44% for the control, 20, 40, 60 mg kg?1 17β‐ES and 20, 40, 60 mg kg?1 17α‐MT treatments. The best colouration was achieved in the 17α‐MT groups (P < 0.05). The L* values varied between 32.98 ± 4.44 and 61.35 ± 2.19, a* values between ?7.06 ± 0.22 and ?3.42 ± 0.11, and b* values between ?7.74 ± 0.10 and 11.65 ± 0.03, while Chroma (C*) and Hue (H°ab) angle values varied between 7.54 ± 0.22 and 13.60 ± 0.01 and between 119.76 ± 0.05 and 239.73 ± 4.86. In conclusion, the 17α‐MT feeding was found to have a greater effect on the growth, feed conversion ratio, masculunization and pigmentation of the electric blue haps than the 17β‐ES treatment.  相似文献   

20.
Atlantic salmon, Salmo salar L., were fed nine experimental diets containing from 0 to 200 mg astaxanthin per kg?1 for six time periods, ranging from 3 to 21 months, in sea cages at Matre Aquaculture Research Station, Matredal, Norway. The sampled fish had an initial mean weight of 115 g and reached a weight of 3.2 kg at the termination of the experiment. Every third month, 10 fish from each dose and time group were sampled and the astaxanthin concentration in the flesh determined. The amount of astaxanthin in the flesh ranged from 0.7 to 8.9 mg kg?1 at the termination of the experiment. This paper discusses deposition of astaxanthin in the flesh of Atlantic salmon in relation to dietary carotenoid levels in the 0–200 mg kg?1 range and feeding times of 3–21 months. Under the conditions of this experiment, no significant effect on astaxanthin deposition rate could be achieved by increasing the astaxanthin level above 60 mg kg dry feed?1. Atlantic salmon should be fed astaxanthin-supplemented diets during the whole seawater stage in order to obtain maximal astaxanthin level in the flesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号