首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解不同地区野生、养殖中华绒螯蟹Eriocheir sinensis群体的遗传多样性、遗传结构及遗传分化情况,利用线粒体细胞色素氧化酶亚基I(COI)基因序列,研究中华绒螯蟹长江流域安徽无为江段、山东东营黄河口、文献报道的辽河野生群体以及湖南大通湖、辽宁盘锦养殖群体的遗传学特征。结果显示:上述5个群体共有36个变异位点,其中简约信息位点8个。盘锦养殖群体(PJ)、东营野生群体(DY)、无为野生群体(WW)、大通湖养殖群体(DTH)以及辽河野生群体(LH)的单倍型数分别为6个、5个、9个、5个和7个,其中单倍型Hap15、16、17为LH群体的独有单倍型,单倍型Hap6、7、8、10为DY群体的独有单倍型,单倍型Hap11为PJ群体独有单倍型,单倍型Hap12、13、14为DTH群体独有单倍型,其中DTH08个体的单倍型与合浦绒螯蟹更接近。LH群体的单倍型多样性(H_d)最高,而DTH群体的核苷酸多样性(P_i)最高;WW群体的单倍型与核苷酸多样性最低。中华绒螯蟹5群体间基于COI序列的固定指数F_(ST)值为-0.034~0.089,分化程度极低,群体间的基因流为5.119~∞,显示不同种群之间基因交流较为频繁,没有明显的遗传结构。系统发育树和单倍型网络图结果显示:单倍型之间不具有明显的地理分化特征,不同地理群体之间的种质混杂情况较为严重。  相似文献   

2.
中华绒螯蟹(Eriocheirsinensis)是中国最重要的淡水养殖蟹类,广泛分布于东亚地区,养殖区域主要集中在长江、黄河和辽河流域。本研究基于线粒体DNAD-loop区评估辽河野生群体(LW)和养殖群体(LC)、黄河野生群体(HW)和养殖群体(HC)及长江野生群体(YW)和养殖群体(YC)的遗传多样性和种群结构。结果显示:(1)用于本研究的D-loop基因片段长度为477 bp,共包含234个变异位点和131个简约信息位点, 6个群体的262个个体中共有110个单倍型,包括90个独有单倍型和20个共享单倍型;(2)6个种群的单倍型多样性指数(Hd)范围为0.88889~0.96522,核苷酸多样性指数(π)范围为0.00887~0.01602,养殖和野生群体遗传多样性水平依次为:HCYCLC及HWLWYW;(3)6个群体的遗传距离(Da)范围为0.0119~0.0173,不论是养殖群体还是野生群体,辽河群体和长江群体之间的遗传距离均最小,且6个群体间遗传分化指数FST为0.12938。对6个群体进行中性检验显示Tajima’s D和Fu’s Fs的值均为负值。综上,基于线粒体D-loop基因的研究结果表明,三水系养殖和野生群体均具有较高的遗传多样性,且辽河和长江水系中华绒螯蟹的亲缘关系相对较近,该研究为中华绒螯蟹的种质资源评估、保护和开发提供了参考。  相似文献   

3.
通过对线粒体DNA控制区和COⅠ基因序列的联合分析,研究了团头鲂(Megalobrama amblycephala)3类遗传生态群体(包含4个野生群体、2个驯养群体、1个选育良种"浦江1号"群体)的遗传多样性和遗传分化情况.结果表明:(1)在所分析的7个群体中,共确定了64种单倍型,群体间无共享单倍型.(2)4个野生群体内线粒体DNA的单倍型多样度(Hd)在0.857~0.943之间,核苷酸变异位点数在31~40之间,核苷酸多样性指数(π)在0.275%~0.461%之间,平均核苷酸差异数(K)的范围为4.043~6.800;2个驯养群体的相应参数变化范围分别为0.714~0.800、18~21、0.122%~0.175%、1.800~2.586,均低于野生群体;选育群体的相应参数分别为0.843、23、0.193%、2.843,低于4个野生群体,但高于2个驯养群体.以上4种多样性参数在7个群体中的变化趋势一致.(3)7个群体之间的平均遗传距离在0.000 6~0.003 5之间,遗传分化指数(FST)在0.010 9~0.133 1之间.4个野生群体间FST值差异不显著(P>0.05),而2个驯养群体间FST值差异显著(P<0.05),它们与选育群体间的FST值差异也显著(P<0.05).以上结果表明,生存环境的殊异(敞开的天然水体,封闭的驯养池塘)和人工选择(严格有序的科学选育)对种群遗传结构影响巨大,导致鱼类不同遗传生态类型群体间产生遗传变异和遗传分化.  相似文献   

4.
长江水系中华绒螯蟹线粒体DNA的遗传多样性研究   总被引:3,自引:0,他引:3  
本文对长江水系南京和江都地区中华绒螯蟹共61个个体的线粒体COI基因进行了限制性片段长度多态性(RFLP)分析。应用PCR技术扩增了中华绒螯蟹线粒体COI基因,选用8种能识别4碱基的限制性内切酶对该基因片段进行RFLP分析。在两个群体中共检测出8种复合单倍型,其中复合单倍型AAAAAAAA和BBBBBAAB为两个群体所共有,它的个体数所占的百分比在两个群体(南京和江都)中分别为87.9%、12.1%和50.0%、25.0%。在南京群体中,复合单倍型间的遗传距离为0.077,而在江都群体中,复合单倍型间的遗传距离为0.004~0.077;南京和江都群体的线粒体COI基因多态度(或称核苷酸多样性指数)π值分别为0.008和0.019。结果说明长江水系中华绒螯蟹具有一定的群体内遗传多样性。  相似文献   

5.
有效的人工增殖放流应监控放流群体和野生群体的遗传结构特征,以避免放流群体对天然群体遗传多样性的负面影响。本研究利用线粒体CO I和Cyt b基因分析了丹江口鲢库区、鲢亲本和鲢子代3 个群体的遗传结构特征。分析结果显示,104 条646 bp线粒体CO I序列中共检测到多态位点15 个,简约信息位点5 个,单一变异位点10 个,定义了7 个单倍型,单倍型多样性为0.544~0.676,核苷酸多样性为0.00221~0.00254;103 条1058 bp线粒体Cyt b序列中共检测到多态位点19 个,简约信息位点13 个,单一变异位点6 个,定义了14 个单倍型,单倍型多样性为0.609~0.714,核苷酸多样性为0.00262~0.00424,总体上处于较高单倍型多样性和较低核苷酸多样性。CO I和Cyt b序列遗传距离、遗传分化指数以及基因流分析结果显示,群体间遗传距离为0.002(CO I)、0.003~0.004(Cyt b),总的遗传分化指数为-0.00468(P>0.05)(CO I)、0.03180(P>0.05)(Cyt b),差异均不显著,群体间基因流为14.69~41.47(CO I)、5.49~40.47(Cyt b),分子方差分析(AMOVA)结果表明群体的遗传变异主要来自群体内。单倍型聚类关系树表明,3 个鲢群体间均存在共享单倍型,不同地理群体间单倍型散乱分布于各支,未形成地理群体的聚集。以上分析结果显示,3 个鲢群体间不存在明显的遗传分化,表明增殖放流鲢群体与丹江口库区野生群体的遗传多样性和遗传结构相近,可开展增殖放流。本研究结果可为丹江口鱼类增殖站鲢群体的增殖放流提供科学依据。  相似文献   

6.
极边扁咽齿鱼是黄河上游特有的裂腹鱼类,由于人类活动的加剧,使其野生数量急剧下降,近年来通过增殖放流的方式为野生资源量进行补充。为评价增殖放流过程中人工繁育群体对野生群体的种质资源的影响,笔者利用线粒体DNA控制区(D-loop)序列来探究极边扁咽齿鱼野生和养殖的4个群体遗传多样性、遗传分化及遗传结构的差异。研究结果显示,4个群体均表现出了较高的单倍型多样性(0.950±0.011)和较低的核苷酸多样性(0.00987±0.00041),并且野生群体的单倍型数目、单倍型多样性指数、核苷酸多样性指数均高于人工繁育群体。遗传结构分析结果显示,野生群体与人工繁育群体之间已产生了一定的遗传分化。中性检验表明,2个野生群体可能经历过种群扩张事件。研究结果表明,极边扁咽齿鱼人工繁育群体可能受到亲本数量有限、人工选择等影响,遗传多样性略有降低,有必要定期开展增殖放流效果的评估,并采用科学的人工繁育方法,丰富极边扁咽齿鱼种群的遗传多样性。  相似文献   

7.
由于拦河筑坝、水体污染以及过度捕捞等原因,哲罗鲑(Hucho taimen)野生资源急剧衰退,已被列入中国脊椎动物红色名录,急需开展哲罗鲑野生群体的恢复与保护工作,人工增殖放流已成为最重要的保护方式之一。为了开展科学有效的哲罗鲑人工增殖放流工作,分析其不同来源群体的遗传多样性与遗传差异非常必要。通过测定来自我国额尔齐斯河(IR)、黑龙江(AR)以及人工繁殖(AP,亲本来源于黑龙江流域)的3个哲罗鲑群体线粒体DNA部分序列(COI和D-loop),并从GenBank下载来自俄罗斯鄂毕河(额尔齐斯河下游河流)、黑龙江流域的部分D-loop序列,比较额尔齐斯河与黑龙江流域哲罗鲑的遗传差异。结果表明,在测定的43尾个体中,线粒体DNA测序长度为2 626bp,共检测出37个多态位点,定义了18个单倍型,单倍型多样性为0.520~0.952,核苷酸多样性为0.00032~0.00167,其中IR群体的单倍型多样性最高,AR群体核苷酸多样性最高,而AP群体单倍型与核苷酸多样性均最低。分子方差分析(AMOVA)显示,77.19%的遗传变异来源于群体间,总遗传分化指数(Fst)为0.7719(P0.01),表明两个流域的哲罗鲑群体间存在显著的遗传分化。无论是仅使用本研究测定的样品,还是加入从GenBank下载的俄罗斯哲罗鲑样品,聚类分析结果均表明存在两个明显的单倍型谱系分支,额尔齐斯河流域哲罗鲑为单独一支,黑龙江流域哲罗鲑聚为另一支。建议加强人工繁殖哲罗鲑的遗传管理和不同水域哲罗鲑增殖放流的遗传学论证,有效维持自然水体哲罗鲑的遗传多样性水平。  相似文献   

8.
为研究山东沿海三疣梭子蟹增殖放流亲蟹群体的遗传多样性状况,实验采用536 bp的线粒体DNA控制区片段作为分子标记,对4个亲蟹群体的遗传多样性和遗传结构进行了分析。结果显示,301个三疣梭子蟹个体共检测到155个单倍型,4个群体的单倍型多样度为0.972 3~0.993 0,核苷酸多样度为0.021 2~0.023 6,表现出丰富的遗传多样性。AMOVA分析和Fst分析结果均显示,4个三疣梭子蟹亲蟹群体间遗传分化微弱,未形成明显的遗传结构,NJ系统树中未出现与各群体相对应的的谱系分支。研究表明,4个增殖放流亲蟹群体的遗传多样性丰富,且其遗传结构与放流海域的野生群体间没有明显分化,种质资源质量较好。此外,群体历史动态分析显示,渤海南部和黄海北部的三疣梭子蟹历史上曾经历过群体扩张事件。  相似文献   

9.
为研究野生与养殖大黄鱼(Larimichthys crocea)群体的遗传多样性,对大黄鱼8个野生群体及6个养殖群体共336个样本的线粒体COⅠ基因部分序列进行了扩增和测序分析。实验最终获得序列片段长621 bp,总变异位点38个,简约信息位点23个,单变异位点15个,其中野生群体包含38个变异位点,占总变异的100%,养殖群体包含8个变异位点,占总变异的21.05%。在所有样本中共检测出单倍型34个,单倍型多样性为0.587,核苷酸多样性为0.00194,野生及养殖群体单倍型多样性指数分别为0.714~0.952、0.000~0.581。大黄鱼养殖与野生两个组群间的遗传分化指数为0.04982,占总变异的4.98%,差异极显著(P0.01),组群间群体间的变异占1.46%(P0.05),群体内的变异占93.56%(P0.01)。以上结果表明,大黄鱼的遗传变异主要来自于群体内,养殖群体的遗传多样性显著低于野生群体,两者的遗传多样性程度均处于较低水平,养殖群体间或野生群体间不存在显著的遗传分化,而养殖与野生两大组群间存在着显著的遗传分化。此外,通过对群体遗传结构及进化树的分析表明,东、黄海大黄鱼应属于同一地理种群,但两者间存在较低程度的遗传分化现象,黄海的大黄鱼群体遗传多样性高于东海群体。本研究可为大黄鱼种质资源的保护和恢复提供理论依据。  相似文献   

10.
基于COⅠ序列绒螯蟹属DNA条形码和遗传多样性研究   总被引:1,自引:0,他引:1  
对绒螯蟹属的中华绒螯蟹如东和七里海群体、日本绒螯蟹、合浦绒螯蟹及狭颚绒螯蟹共80条线粒体COⅠ片段进行扩增和测序,并与GenBank中绒螯蟹属的台湾绒螯蟹2条和近方蟹属的绒毛近方蟹19条COⅠ基因序列进行联配分析。结果显示,101条序列包含44种单倍型,序列组成表现明显的碱基偏倚性。中华绒螯蟹如东、七里海群体与日本绒螯蟹间的遗传距离分别为1.210%和1.078%,明显低于COⅠ基因DNA条形码鉴别种的遗传距离为2%的阈值,表明中华绒螯蟹和日本绒螯蟹为同一物种;而合浦绒螯蟹与中华绒螯蟹如东和七里海群体及与日本绒螯蟹的遗传距离分别为4.823%、5.101%以及5.011%,明显大于2%的鉴别阈值,说明合浦绒螯蟹为独立的种。以绒毛近方蟹为外群,基于群体内及群体间的遗传距离构建的邻接树显示,中华绒螯蟹与日本绒螯蟹聚在一起,合浦绒螯蟹则聚成单系。本文测序的5个群体除狭颚绒螯蟹外,其余均具有遗传多样性,单倍型多样性为0.593±0.144~0.779±0.068,核苷酸多样性为0.00156~0.01336;此外,中华绒螯蟹如东群体与日本绒螯蟹、合浦绒螯蟹和中华绒螯蟹七里海群体分别共享单倍型H1、H2和H3,说明这些蟹类可能有种质资源混杂或是遗传污染的现象。  相似文献   

11.
通过对分布在东海区远海区(济州岛海域)和近海区(长江口以南和以北海域)的三疣梭子蟹(Portunus trituberculatus)自然群体线粒体COⅠ基因部分序列的测定,比较并分析了其群体遗传多样性和遗传结构。在24个采集点共286个样本的线粒体COⅠ序列中共检测到45种单倍型,单倍型多样性为0.864;核苷酸多样性为0.002 84,平均核苷酸变异数是1.686,其中有23个单倍型为单个采集点所独享,Hap3出现频率最高,在23个采样点的83个样本中均有发现,是所有三疣梭子蟹样本的共享中心单倍型。群体遗传多样性分析显示,远海区群体的遗传多样性水平最高,其次为长江口以北群体,长江口以南群体最低。由群体间遗传距离、系统进化树和单倍型网络关系图发现,东海区海域三疣梭子蟹种群间存在基因交流,亲缘关系的远近不以地理位置的远近为依据;AMOVA分子方差分析结果显示,三疣梭子蟹的遗传变异主要来自群体内,而群体间无显著遗传分化,不存在明显的地理趋势。  相似文献   

12.
3种中华绒螯蟹群体线粒体COⅡ基因序列测定与进化分析   总被引:3,自引:0,他引:3  
对我国长江与移居到英国泰晤士河、美国旧金山湾的3个中华绒螯蟹群体的线粒体细胞色素氧化酶亚基Ⅱ(COII)的全序列进行了测定.在693 bp的序列长度中,长江群体、泰晤士河群体和旧金山湾群体分别有20、8、7个变异位点;它们的单倍型多样性指数分别为0.8433、0.8158、0.7821;核苷酸多样性指数分别为0.0048、0.0031、0.0039.AMOVA分析表明:长江群体与泰晤士河群体和旧金山湾群体已出了显著的遗传分化,而泰晤士河群体和旧金山湾群体间却未出显著的遗传分化.邻接法(NJ)构建的系统关系树和最小拓展网络分析显示,旧金山湾群体与泰晤士河群体存在一定程度的基因流,旧金山湾的中华绒螯蟹群体除直接来自中国长江外,也可能有一部分来自先移居于欧洲的群体.  相似文献   

13.
为了解洞庭湖区养殖克氏原螯虾的遗传多样性,从线粒体Cytb和COⅠ基因入手,经基因组DNA提取、PCR扩增、序列测定和拼接,比较分析了岳阳华容县和益阳南县2处主养殖区内共11个采集点的克氏原螯虾遗传结构。试验结果显示,在华容县的6个采集点中,基于Cytb基因的克氏原螯虾的单倍型多样性指数为0.506,核苷酸多样性指数为0.272 65;基于COⅠ基因的克氏原螯虾的单倍型多样性指数为0.258,核苷酸多样性指数为0.136 1。在南县的5个采集点中,基于Cytb基因的克氏原螯虾的单倍型多样性指数为0.467,核苷酸多样性指数为0.259 74;基于COⅠ基因的克氏原螯虾的单倍型多样性指数为0.244,核苷酸多样性指数为0.122 3。单倍型系统进化树和遗传距离分析表明,11个采集点的克氏原螯虾呈现交叉分布,遗传分化不显著。结果表明,洞庭湖区养殖克氏原螯虾近亲交配严重,遗传多样性低。  相似文献   

14.
长江中上游4个鲢群体遗传多样性分析   总被引:1,自引:0,他引:1  
鲢(Hypophthalmichthys molitrix)是我国重要的淡水经济鱼类,长江是其重要的种质资源库。为了研究长江中上游鲢群体遗传多样性现状,比较中上游群体的遗传分化,本研究采用线粒体DNA(mtDNA)细胞色素b基因(Cyt b)和控制区(D-loop)序列分析了长江中上游鲢群体遗传多样性及遗传分化状况,为鲢资源的保护和开发提供科学依据。采集了长江中上游江津(JJ)、宜昌(YC)、嘉鱼(JY)、黄冈(HG)等4个鲢群体共151尾样本。结果表明:135条Cyt b序列共检测出53个多态位点和19种单倍型,150条D-loop序列共检测出94个多态位点和48种单倍型,平均单倍型多样性指数(Hd)和核苷酸多样性指数(Pi)分别为0.693、0.00748和0.902、0.01557,2个标记数据均显示上游群体遗传多样性较中游群体高;群体间的分化指数(FST)和基因流(Nm)均表明长江上游(JJ)和中游(YC、JY、HG)地理群体间存在显著遗传分化。基于单倍型构建的NJ系统发育树及单倍型中值连接网络分析图显示,长江中上游鲢群体可划分为两个谱系,其中一个谱系主要源自上游群体。  相似文献   

15.
使用线粒体COⅠ基因部分序列作为遗传标记,分析了中国海南岛8个弹涂鱼(Periophthalmus modestus)地理群体的遗传多样性、遗传分化、种群历史动态,以为更好的保护弹涂鱼种质资源提供依据。采集的236尾弹涂鱼样本的COⅠ基因片段序列共检测到59种单倍型,总体单倍型多样性较高(0.861±0.019),核苷酸多样性偏低(0.004 39±0.000 24);基于单倍型的邻接关系树没有呈现与地理群体成谱系的结构;分子方差分析表明,遗传变异主要来自群体内(99.36%);遗传分化指数(F_(st))显示,三亚与临高、东方两个群体存在中等程度遗传分化;群体间基因交流频繁,核苷酸不配对分布和中性检验表明,部分地方群体曾经发生过扩张。海南岛弹涂鱼整体遗传分化程度不高(F_(st)=0.006 37),是一个随机交配的群体,遗传多样性较低,建议加强弹涂鱼资源的保护。  相似文献   

16.
丁奎  张辉  张秀梅  宋娜  高天翔 《水产学报》2014,38(6):769-777
为研究许氏平鲉养殖群体与野生群体遗传结构及遗传多样性状况,采用PCR扩增获得许氏平鲉线粒体DNA控制区高变区片段,并对其进行比对分析。结果显示,在长度为451 bp的线粒体控制区片段中,养殖群体单倍型多样度(0.540±0.067~0.815±0.021)明显低于野生群体(0.883±0.053~0.944±0.028),而核苷酸多样度(0.001±0.001~0.007±0.004)与野生群体(0.004±0.003~0.007±0.004)相差不大,遗传多样性水平均较低。在52个单倍型中,养殖群体仅占12个,且有6个单倍型与野生群体共享。群体间遗传分化指数和AMOVA分析结果显示,养殖群体和野生群体之间以及养殖群体之间的遗传分化较大,而野生群体间遗传变异较小,组群间的遗传分化较小且不显著(ΦCT=-0.013;P0.05)。单倍型最小跨度树和NJ系统发育树均未检测到明显的谱系结构。  相似文献   

17.
基于线粒体控制区序列的南海圆舵鲣种群遗传结构分析   总被引:3,自引:0,他引:3  
利用线粒体控制区(D-loop)高变区序列作为遗传标记,分析了中国南海5°N~21°N之间7个圆舵鲣(Auxis rochei)地理群体的遗传结构特征。201尾样本的D-loop区序列共检测到185种单倍型。各个采样点均呈现出很高的单倍型多样性(0.958 2~1.000 0)和较高的核苷酸多样性(0.034 327~0.041 235)的特征。单倍型邻接关系树未呈现与地理群体对应的谱系结构。分子方差分析和成对遗传分化系数(FST)显示南海海域圆舵鲣的遗传变异主要来自群体内(98.33%),群体间基因交流频繁,是一个随机交配群。核苷酸不配对分布和中性检验表明南海圆舵鲣在更新世晚期曾经历过种群的快速扩张。结果表明,南海圆舵鲣具有丰富的遗传多样性水平,遗传分化不显著,在渔业上可以作为一个单元来管理。  相似文献   

18.
郭婷  宋娜  刘淑德  涂忠  胡发文  高天翔  陈健 《水产学报》2020,44(12):1976-1986
基于线粒体DNA控制区高变区部分序列和4对微卫星标记,对大泷六线鱼放流群体及自然海域群体的遗传多样性与遗传差异进行了比较分析。线粒体DNA控制区序列分析的结果显示,413尾个体共检测到单倍型117种,其中仅Hap_3、Hap_7和Hap_17为共享单倍型,占总单倍型数目的2.5%;放流、野生群体特有单倍型分别为20种和66种,分别占总单倍型数的17.09%和56.41%,放流群体特有单倍型数明显低于野生群体;放流群体和野生群体核苷酸多样性分别为0.005 1~0.006 7和0.005 8~0.007 5,单倍型多样性分别为0.856 7~0.949 9和0.883 1~0.954 9,遗传多样性均较高。微卫星标记分析结果显示,放流、野生群体平均等位基因数(Na)分别为13~44和13~27,平均多态信息含量为0.885 6和0.874 0,均具较高的遗传多态性;群体遗传结构分析结果表明,放流、野生群体间遗传分化水平较低。研究表明,山东近海大泷六线鱼放流群体与野生群体均具有较丰富的遗传多样性,且遗传结构未存在显著的群体分化。  相似文献   

19.
利用线粒体DNA细胞色素b基因的421 bp部分序列对北屯、乌伦古湖、博斯腾湖3个野生河鲈(Perca fluviatilis)群体和北湖、五家渠2个养殖河鲈群体序列多样性与种群遗传结构进行分析。结果表明:100个个体中检测到7个单倍型,变异位点10个,其中野生群体60个个体检测到9个变异位点和6个单倍型,养殖群体40个个体共检测到8个变异位点和4种单倍型;野生群体平均单倍型多样性和平均核苷酸多样性(Hd=0.496±0.121,Pi=0.002 53±0.001 54)高于养殖群体(Hd=0.416±0.127,Pi=0.001 23±0.001 13),分子方差分析揭示,98.74%的遗传变异性出现在种群内个体间。群体间的FST分析揭示野生群体和养殖群体分化程度较低(0.05FST0.15)。分子系统树和单倍型网络图分析也表明,河鲈单倍型间关系较近,野生群体和养殖群体不存在显著分化。  相似文献   

20.
测定了连云港、舟山、防城群体34 ind军曹鱼(Rachycentron canadum)线粒体细胞色素b基因883 bp序列,共检测到5个变异位点,发现6个单倍型,平均单倍型多样性(h)和核苷酸多样性(π)分别为0.324和0.000 4,总体表现出较低的遗传多样性;其中连云港群体遗传多样性最高,单倍型多样性和核苷酸遗传多样性分别为0.473±0.162和0.000 57±0.005 93;而舟山群体没有任何变异。连云港与舟山、防城群体间的FST值分别为0.029(P=0.00)与0.042(P=0.00),舟山与防城群体间的FST为-0.048 03(P=0.00),表明连云港与其它两个群体间仅有较低的分化而舟山与防城群体间无明显分化。分子方差分析(AMOVA)表明,3个群体的遗传变异大部分来自于群体内(74.45%,P=0.000)。军曹鱼单倍型拓扑结构呈星状排列,将3个群体作为一个整体进行Tajimas D和Fu’s Fs分析,二者均为显著负值(FST=-1.922 40,P﹤0.00;FST=-5.735,P﹤0.00),表明军曹鱼在历史上经历了种群的扩张,根据τ的观察值0.364,估算出军曹鱼种群扩张时间约为3.1~1.2万年,即末次冰盛期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号