首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

2.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

3.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

4.
This study evaluated the effects of soy protein ratio, lipid content and the minimum dietary level of krill meal in plant‐based diets over the growth performance and digestibility of Litopenaeus vannamei. Nine plant‐based diets varied the soybean meal (SBM) and soy protein concentrate (SPC) inclusion ratio at 1 : 2.3, 1 : 1 and 2.5 : 1, and their dietary lipid content at 121.4 ± 9.4, 102.3 ± 1.2, and 79.9 ± 1.2 g kg?1 (in a dry matter basis). An additional diet containing 120 g kg?1 of fish meal (salmon by‐product) was used as a control. Krill meal was included at 0, 5, 10, 20 and 30 g kg?1 in a new set of plant‐based diets. After 10 weeks in clear‐water tanks of 0.5 m3, no effect of SBM:SPC ratio and dietary lipid content was detected on shrimp survival. However, dietary lipid levels of 80 and 121 g kg?1 combined with a high SPC to SBM resulted in the lowest final body weight and the poorest apparent crude protein digestibility, respectively. Krill meal increased feed intake at only 10 g kg?1, while at 20 g kg?1, it accelerated shrimp growth, increased yield and reduced food conversion ratio.  相似文献   

5.
An 8‐week feeding trial was conducted to determine the optimal dietary arginine requirement for juvenile swimming crab Portunus trituberculatus. Six isonitrogenous and isolipidic experimental diets were formulated to contain graded arginine levels which ranged from 15.9 to 33.0 g kg?1. Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (4.72 ± 0.12 g). The results indicated that dietary arginine had significant effects on weight gain (WG), specific growth rate (SGR), protein productive value, feed efficiency and protein efficiency ratio. Weight gain and SGR significantly increased with the dietary arginine increasing from 15.9 to 27.4 g kg?1, while with the further increasing from 27.4 to 33.0 g kg?1, WG and SGR did not increase significantly. Maximum arginine, proline and total essential amino acid contents in muscle were observed in 27.4 g kg?1 group diet. The swimming crab fed the diet with lower dietary arginine level showed higher AST and lower ALT in the serum. Crab fed with the lower dietary arginine level had significantly lower ALT in the serum than the other groups. Haemolymph indexes were significantly affected by the dietary arginine level except for the cholesterol concentration, and the highest values were all found in 27.4 g kg?1 group diet. The two slope broken‐line model using SGR showed that the optimal dietary arginine requirement was 27.7 g kg?1 of the dry matter (56.0 g kg?1 dietary protein) for juvenile swimming crab.  相似文献   

6.
A 3 × 5 factorial design including three lipid levels (100, 130 and 180 g kg?1 diet, based on dry matter) and five dietary protein levels (370, 420, 470, 520 and 570 g kg?1 diet, based on dry matter) was conducted to investigate the optimum dietary lipid and protein requirements for Rutilus frisii kutum fingerlings. Triplicate groups of 80 kutum (500 ± 60 mg initial weight) were stocked in 250‐l tanks and fed to apparent satiation thrice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly (P < 0.05) affected by dietary protein and lipid levels. Weight gain, specific growth rate and feed conversion ratio of kutum improved significantly with increasing protein level from 370 to 470 g protein kg?1 diet, but there was a significant decrease in growth parameters with increasing protein level from 470 to 570 g protein kg?1 diet. Also, the higher values of weight gain, specific growth rate and better feed conversion ratio were observed for fish fed diets containing 130 g kg?1 lipid diet. The results of this study showed that diet containing 420 g kg?1 protein and 130 g kg?1 lipid with a P:E ratio of 19.22 mg protein kJ?1 of gross energy is optimal for kutum fingerlings.  相似文献   

7.
In experiment 1, juvenile sea urchins (n = 80, 0.088 ± 0.001 g wet weight and 5.72 ± 0.04 mm diameter) were held individually and fed ad libitum one of three semi‐purified formulated diets (n = 16 individuals treatment?1). In the diets, protein was held constant (310 g kg?1 dry, as fed) and carbohydrate level varied (190, 260, or 380 g kg?1 dry, as fed). Wet weights were measured every 2 weeks. Total wet weight gain was inversely proportional to dietary carbohydrate level and energy content of the respective diet. In experiment 2, sea urchins (5.60 ± 0.48 g wet weight, n = 40) fed 190 g kg?1 carbohydrate consumed significantly more dry feed than those fed 260 g kg?1, but not more than those fed 380 g kg?1 carbohydrate. Based on differential feed intake rates, sea urchins that consumed more feed also consumed higher levels of protein and had the highest weight gain. Consequently, protein content and/or protein: energy ratio may be important in determining feed utilization and growth among sea urchins in this study. The average digestible energy intake was approximately 70 kcal kg?1 body weight day?1, suggesting daily caloric intake of juvenile Lytechinus variegatus is lower than in shrimp and fish.  相似文献   

8.
Dietary lysine requirement of fingerling Heteropneustes fossilis (6.96 ± 0.05 g) was quantified by conducting 12‐week feeding trial in a flow‐through system at 28°C. Casein–gelatin based isonitrogenous (38% CP) and isocaloric (14.7 kJ g?1 DE) amino acid test diets with six levels of dietary lysine (1.5%, 1.75%, 2.0%, 2.25%, 2.5%, 3.0% dry diet) were fed to apparent satiation in triplicates. Broken‐line and second‐degree polynomial regression analyses at 95% plateau of absolute weight gain (AWG; g fish?1), feed conversion ratio (FCR), protein deposition (PD; g fish?1) and lysine deposition (LD; g fish?1) exhibited lysine requirement between 2.0% to 2.3% of the dry diet, corresponding to 5.3–6.1% protein.  相似文献   

9.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

10.
A 12‐week feeding trial was conducted to estimate the dietary copper requirement of fingerling Channa punctatus. Six casein?gelatin‐based test diets (450 g kg?1 crude protein; 18.81 kJ g?1 gross energy) with graded levels of copper as copper sulphate (3.7, 4.7, 5.7, 6.7, 7.7 and 8.7 mg copper equivalent kg?1 diet) were formulated and fed to triplicate groups of fish (7.25 ± 0.81 cm; 5.21 ± 0.27 g) near to satiation. Fish fed diet with 6.7 mg kg?1 copper had highest absolute weight gain (AWG; 51.63 g fish?1), protein efficiency ratio (PER; 1.42 g fish?1), protein gain (PG; 8.34 g fish?1), haemoglobin (Hb; 9.68 g dL?1), haematocrit (Hct; 31.18%) and RBCs (3.24 × 106 × mm?3). Feed conversion ratio (FCR) was found to be best (1.57) at above level of dietary copper. Whole body copper concentration was found to increase with the increasing levels of dietary copper. Hepatic thiobarbituric acid‐reactive substances concentration was found to decrease with increasing dietary concentrations of copper up to 6.7 mg kg?1 beyond which a reverse trend in this parameter was noted. Broken‐line regression analysis of AWG, FCR and PG concentrations against varying levels of dietary copper yielded the requirement in the range of 6.66–6.78 mg kg?1. Data generated during this study would be useful in formulating copper‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

11.
To quantify dietary L‐tryptophan requirement of fingerling Heteropneustes fossilis (6.66 ± 0.08 g), casein–gelatin‐based isonitrogenous (38% CP) and isoenergetic (14.72 kJ g?1 DE) purified diets with eight levels of L‐tryptophan (0.12%, 0.16%, 0.20%, 0.24%, 0.28%, 0.32%, 0.36%, 0.40% dry diet) were fed to triplicate groups of fish twice daily to apparent satiation for 12 weeks. Incremental levels of dietary tryptophan from 0.12 to 0.28% significantly (P < 0.05) improved absolute weight gain (AWG; 14.3–65.9 g fish?1), feed conversion ratio (FCR; 5.9–1.5), protein retention efficiency (PRE; 6.2–32.2%), haemoglobin (Hb; 6.5 to 11.9 g dL?1) and haematocrit (Hct; 23.5–33.8%). To determine the precise information on tryptophan requirement, data were subjected to broken‐line and second‐degree polynomial regression analysis. Broken‐line regression analysis reflected highest R2 values for AWG g fish?1 (0.999), PRE% (0.993), Hb g dL?1 (0.995) and Hct% (0.993) compared with R2 values obtained using second‐degree polynomial regression analysis of AWG g fish?1(0.949), PRE% (0.890), Hb g dL?1(0.969) and Hct% (0.943), indicating that data were better fit to broken‐line regression analysis. Hence, based on broken‐line regression analysis at 95% maximum response, tryptophan requirement of fingerling H. fossilis is recommended between 0.24% and 0.27% dry diet (0.63–0.71% protein).  相似文献   

12.
A 12‐week feeding trial was conducted to determine the dietary threonine requirement of fingerling Indian major carp, Catla catla (3.35 ± 0.11 cm; 0.59 ± 0.06 g). Six casein‐gelatin based (33% crude protein; 3.23 kcal g?1 digestible energy) amino acid test diets with graded levels of analysed threonine (0.74%, 0.96%, 1.21%, 1.48%, 1.72% and 1.93% dry diet) were fed to satiation to triplicate groups of fish. Absolute weight gain (g per fish), feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio and carcass protein significantly improved with the increase in dietary threonine and peaked at 1.48% of the dry diet. Haematological indices were also found to be best in fish fed at 1.48% threonine diet. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio, carcass protein, haemoglobin (g dL?1), haematocrit (%) and RBCs (106 × mm?3) at 95% of maximum and minimum response exhibited the threonine requirement of fingerling C. catla between 1.35% and 1.48% dry diet, corresponding to 4.09–4.48% dietary protein. Present finding would be useful in formulating threonine‐balanced feeds for the intensive culture of C. catla.  相似文献   

13.
An 8‐week feeding trial was conducted to investigate the effects of dietary cholesterol levels on growth, feed utilization, body composition and immune parameters in juvenile oriental river prawn, Macrobrachium nipponense. Six isolipid (80 g kg?1 crude lipid) and isoproteic (400 g kg?1 crude protein) diets, supplemented with 0, 3.0, 6.0, 9.0, 12.0 and 15.0 g kg?1 cholesterol, were evaluated. Growth performance and feed utilization of M. nipponense were improved as dietary cholesterol levels increased. Weight gain and specific growth rate were highest, and feed conversation ratio was lowest, when prawns were fed a diet supplemented with 9.0 g kg?1 cholesterol. However, final body weights and survival rates of juvenile M. nipponense were not affected significantly by dietary cholesterol. Body composition of prawns, including moisture, crude protein and crude lipid, was not significantly affected by changes in dietary cholesterol. The immune parameters measured in hepatopancreas, including total antioxidant capacity, and glutathione, catalase, alkaline phosphatase and acid phosphatase activities, were at optimum levels in prawns fed with 9.0 g kg?1 dietary cholesterol. In summary, the best growth performance, lowest feed conversation ratio, and the most enhanced antioxidant capacity and immunity parameters were attained in juvenile M. nipponense when fed a diet supplemented with 9.0 g kg?1 cholesterol.  相似文献   

14.
This experiment was conducted to investigate total aromatic amino acid requirement of juvenile grass carp Ctenopharyngodon idella. Six isonitrogenous and isoenergetic semipurified diets containing casein and gelatin with graded level of phenylalanine (7.8, 11.1, 14.4, 17.6, 21.7, 24.9 g kg?1 DM) were formulated. Each diet was randomly assigned to triplicate group of 30 fish (3.58 ± 0.002 g, mean ± SEM) each tank for 8 weeks. The highest weight gain (WG, %), final body weight (g) and specific growth rate were recorded when phenylalanine level was 17.6 g kg?1 of the diet. Fish muscle protein content, protein efficiency ratio (PER), feed conversion ratio and alanine aminotransferase were significantly affected by dietary phenylalanine level. The polynomial regression calculated using WG and PER indicated that the optimal dietary total aromatic amino acid (phenylalanine + tyrosine) requirement for juvenile grass carp was 24.4 g kg?1 of the diet, corresponding to 65.9 g kg?1 of dietary protein.  相似文献   

15.
This study was designed to evaluate the efficacy of eight sources (designated A–H) of soybean meal (SBM) which included six new non‐genetically modified soya varieties in practical feed formulation for Pacific white shrimp, Litopenaeus vannamei, using both growth and digestibility trials. A soybean meal‐based reference diet was formulated using conventional soybean meal (527 g kg?1 diet), which was then replaced on an isonitrogenous basis with various other experimental soybean meals. In a 6‐week growth trial, shrimp in four replicate tanks per dietary treatment (10 shrimp per tank, initial weight 0.52 ± 0.04 g) were cultured in a recirculating system. There were no significant differences with respects to per cent weight gain and survival across all dietary treatments; however, final weights and feed conversion ratio (FCR) were lower in shrimp offered diet 3. Apparent digestibility coefficients for the eight (A–H) different soybean meals were determined in L. vannamei for dry matter (ADMD), gross energy (ADE) and crude protein (ADP) using 10 g kg?1 chromic oxide as inert marker with 70 : 30 replacement techniques. Coefficients ranged from 71.3% to 88.3%, from 76.6% to 91.3% and from 93.6% to 99.8%, for ADMD, ADE and ADP, respectively. Improved digestibility values were observed in soybean C which was characterized by crude protein (471 g kg?1), crude fat (97 g kg?1), low cooking temperature (180 °C), higher nitrogen solubility index (689 g kg?1) and protein dispersibility index (619 g kg?1). This indicates that new lines of soybean meal can be used to improve digestibility coefficients in shrimp feeds.  相似文献   

16.
Six isonitrogenous and isocaloric semi‐purified diets were prepared with different levels of microbial levan: control (Basal), T1 (Basal + 2.5 g kg?1 diet), T2 (Basal + 5 g kg?1 diet), T3 (Basal + 7.5 g kg?1 diet), T4 (Basal + 10 g kg?1 diet) and T5 (Basal + 12.5 g kg?1 diet), fed to six groups of fish in triplicate tanks. The results of the 60 days feeding trail showed that supplementation of dietary levan significantly affected the weight gain percentage and specific growth rate of the treatment groups fed at 10 g kg?1 or more levan. Lowest feed conversion ratio (FCR) value and highest survival percentage among levan fed groups were observed with 12.5 g kg?1 incorporation (T5) and was comparable with (T4) group. Significant increase in muscle RNA level and RNA/DNA ratio was observed with the increasing dietary levan. Fish fed 12.5 g kg?1 levan had significantly higher protease, amylase and lipase activities compare with the control group. Lowest Aspartate aminotransferase (AST) activity in the liver and muscle was observed in the T5 group fed with highest level of dietary levan. Overall results conclude that dietary microbial levan incorporation at 12.5 g kg?1 could be used as potent dietary prebiotic for the culture of L. rohita juveniles.  相似文献   

17.
A 126‐day experiment was carried out under controlled conditions to compare the effects of five levels (0.5, 1.0, 1.5, 2.0 and 2.5 g kg?1) of dietary nucleotide (Vannagen®) on the growth performance and biological indices of juvenile crayfish (8.25 ± 0.39 g). The protein efficiency ratio (PER, 1.69–2.17), lipid efficiency ratio (LER, 2.29–3.00), energy efficiency ratio (EER, 2.68–3.65), protein productive value (PPV, 57.01–68.95%), lipid productive value (LPV, 63.02–75.15%) and energy productive value (EPV, 68.20–88.15%) increased significantly (P < 0.05) as linear response to increased dietary nucleotide from 0.5 to 2.5 g kg?1 in the feed. With an increase in the dietary nucleotide, the uricase activity (654.29–827.63 U g?1) and lactobacillus count to total count ratio (1.21–2.17) of crayfish fed the experimental diets increased significantly (P < 0.05). Crayfish fed the diets containing different levels of nucleotide (from 0.5 to 2.5 g kg?1) had higher phenoloxidase activity (1.57–2.11 U min?1) than that of control after air exposure challenge. At the levels tested, 2 g kg?1 nucleotide in the diet was considered optimum for growth performance, digestibility and immune responses. It can be concluded that dietary nucleotide exerted positive effects on growth performance, feed utilization and accelerate crayfish immune response against air exposure challenge.  相似文献   

18.
This study was conducted to determine the effects of dietary cellulase addition on improving the nutritive value of Chlorella for juvenile crucian carp Carassius auratus (initial body weight: 2.99 ± 0.02 g, mean ± SEM). Five isonitrogenous and isoenergetic experimental diets were formulated to contain 0.0 (control), 0.5, 1.0, 1.5 and 2.0 g kg?1 cellulase, respectively. Each experimental diet was randomly assigned to triplicate groups with 25 juvenile fish per fibreglass tank for 8 weeks. The results showed that weight gain, specific growth rate, feed intake and the trypsin activity in the anterior intestine increased with increasing dietary cellulase to 1.5 g kg?1 and then declined with further addition. However, the mRNA expression levels of Mrf4 and Myf5, the apparent digestibility coefficients for dry matter, protein, energy and the majority of amino acids, and the activity of lipase in the anterior intestine were highest in fish fed the 1.0 g kg?1 cellulase diet, and then tended to decline with further cellulase supplementation. In conclusion, the optimal dietary cellulase supplementation level was 1.0–1.5 g kg?1, which can improve growth performance, digestive activities and nutrient digestibility in crucian carp.  相似文献   

19.
The effects of dietary phosphorus (P) on growth, body composition and immunity of young taimen (Hucho taimen) were studied. Six purified diets contained graded levels (2.3‐control, 4.0, 5.6, 7.5, 9.1 and 10.8 g kg?1 diet) of available P. Each diet was fed to triplicate groups of 30 fish with an initial average weight (55.31 ± 0.38) g for 84 days. The weight gain, specific growth rate and feed conversion ratio were improved by dietary available P up to 4.35 g kg?1 (< 0.05) and then levelled off. Hepatosomatic index and body crude lipid content decreased significantly with increasing P levels, while ash contents and P concentrations in the whole body and vertebrae increased by dietary available P up to 4.36 and 4.44 g kg?1 and then levelled off respectively (< 0.05). Liver superoxide dismutase and glutathione peroxidase and plasma alkaline phosphatase activities in the treatment groups were significantly higher compared with the control group (< 0.05). Plasma IgM contents increased linearly with increasing dietary P from 4.0 to 9.1 g kg?1 group and then decreased. Dietary P supplementation reduced plasma triglyceride, malondialdehyde and liver malondialdehyde contents. There were no significant effects on plasma total protein, albumin, globulin, glucose, aspartate aminotransferase and alanine aminotransferase, catalase, lysozyme and liver catalase compared with the control group (> 0.05). Broken line regression analysis indicated that dietary available P requirement was 4.34 and 4.35 g kg?1, based on weight gain and P concentration in the whole body respectively.  相似文献   

20.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号