首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Effects of thermal and enzymatic treatments of soybean meal on apparent absorption of total phosphorus, phytate phosphorus, nitrogen (protein), ash, calcium, magnesium, copper, iron, manganese, strontium and zinc were examined using rainbow trout, Oncorhynchus mykiss (Walbaum), as the test species. Absorption of the test nutrients was estimated using yttrium as an inert non-absorbable indicator. Thermal treatments (microwaving, dry roasting, steam heating, cooking) had no measurable effect on the apparent absorption of phosphorus and other minerals. Phytase supplementation increased the apparent absorption of phosphorus, nitrogen (protein), ash, calcium, magnesium, copper, iron, strontium and zinc in low-ash diets containing soybean meal, but had little effect in high-ash diets containing both soybean and fish meal. In low-ash diets, the apparent absorption of phosphorus increased in accord with the level of phytase added to the diet, from 27% (no phytase added) up to 90% (phytase added, 4000 units kg−1 diet) or 93% (predigested with phytase, 200 units kg−1 soybean meal). In high-ash diets, dietary acidification with citric acid decreased the effect of phytase, whereas in low-ash diets, acidification markedly increased the effect of the enzyme. Excretion of phosphorus in the faeces of fish fed a low-ash diet containing phytase-treated soybean meal was 0.32 g per kg diet consumed, a 95%−98% reduction compared with phosphorus excretion by fish consuming commercial trout feeds.  相似文献   

2.
This study was designed to evaluate the effects of using soybean meal supplemented with or without methionine (M) and graded levels of phytase (P) to replace high‐level (60%) fish meal in the diets for juvenile Chinese sucker. Seven experimental diets (about 430 g kg?1 crude protein on dry matter basis) were formulated from practical ingredients. The control diet (FM) was formulated to contain 400 g kg?1 white fish meal (FM), whereas in the other six diets (diets 2–7), soybean meal (SBM) was used to replace 60% fish meal with or without methionine (3 g kg ?1) and 0,500, 1000, 1500 and 2000 U kg?1 phytase (designated as SBM, SM, SMP500, SMP1000, SMP1500 and SMP2000, respectively). Results from the feeding trial indicated that SBM without any methionine or phytase supplement replacing about 60% FM significantly affected the growth of fish (< 0.05). Weight gain of fish fed diet SM was significantly higher than the fish fed diet SBM, but still much lower than fish fed the control diet (< 0.05). SBM with methionine and phytase supplement significantly improved the growth of fish and apparent digestibility coefficients of phosphorus compared with the groups which fed diet SBM and diet SM (< 0.05). Weight gain of fish fed SMP1000, SMP1500 and SMP2000 had no significant difference than fish fed control diet. Furthermore, fish fed SMP1500 showed optimum weight gain and ADC of phosphorus between these three groups. This suggested that soybean meal with 3 g kg?1 methionine and 1500 U kg?1 phytase supplement could successfully replace 60% fish meal in the diet for juvenile Chinese sucker without affecting growth and enhanced the apparent digestibility coefficient of phosphorus.  相似文献   

3.
An 8‐week feeding trial was conducted in flow through system to examine the effects of dietary supplementation of microbial phytase on growth, nutrient utilization, haemato‐biochemical status and body compositions in common carp, Cyprinus carpio (L.) fingerlings (average weight 6.66 ± 0.08 g). The aim of experiment was also to determine whether dicalcium phosphates (DCP), tracemineral premix and lysine and methionine supplemental levels in carp diet could be reduced if microbial phytase was supplemented. Control diet (diet 1) supplemented with DCP, tracemineral premix and lysine and methionine without microbial phytase supplementation. Four experimental diets were formulated with reduction of either dietary DCP or trace minerals or lysine and methionine or all four supplementation levels by 100% of control diet without microbial phytase supplementation (diet 2, 3, 4 and 5 respectively). Another two experimental diets were formulated with reduction of all dietary DCP, trace minerals, lysine and methionine supplementation levels by 0 and 100% of control diet with dietary microbial phytase supplementation at 500 FTU kg−1 diet (diet 6 and 7 respectively). After acclimation of fish for 2 weeks, 20 fish were randomly stocked into triplicate tanks for each of seven treatments (T0, T1, T2, T3, T4, T5 and T6 for diet 1, 2, 3, 4, 5, 6 and 7 respectively) and fed with respective diet to apparent satiation. Results indicated that phytase was effective in releasing most of the phytate bound proteins, amino acids and minerals for optimum utilization and performance. Results also suggested that DCP, trace minerals and lysine and methionine supplementation level could be replaced by microbial phytase supplementation at 500 FTU kg−1 in soybean‐based common carp diets without altering the optimum performance of fish. Optimum replacement level of dietary DCP, trace minerals and lysine and methionine with phytase supplementation at 500 FTU kg−1 soybean‐based carp diet needs to be standardized in further investigations.  相似文献   

4.
This study was conducted to evaluate the effects of dietary microbial phytase supplementation on nutrient digestibility, growth performance and body composition in juvenile Korean rockfish fed soybean meal-based diets.Nine experimental diets were formulated to be isonitrogenous and isocaloric to contain 48.6% crude protein (CP) and 15.9 kJ of available energy/g with or without dietary phytase (Natuphos-5000™, BASF, NJ, USA) supplementation. White fish meal (FM) provided 89.1% of the total protein in the basal diet (S0), in the other eight diets, 30 or 40% FM protein was replaced by soybean meal: 70% FM+30% soybean meal (S30); 70% FM+30% 1000 U phytase pretreated SM (S30PP1000); 70% FM+30% SM+1000 U phytase/kg diet (S30P1000); 70% FM+30% SM+2000 U phytase/kg diet (S30P2000); 60% FM+40% SM (S40); 60% FM+40% 1000 U Ptre SM (S40PP1000); 60% FM+40% SM+1000 U phytase/kg diet (S40P1000); and 60% FM+40% SM+2000 U phytase/kg diet (S40P2000). After 2 weeks of the adaptation, triplicate groups of 20 fish initially averaging 7.25±0.04 g (mean±S.D.) were randomly distributed into the aquarium and were fed one of the experimental diets for 8 weeks.By the end of the 8-week feeding trial, supplementation of phytase significantly improved the apparent digestibility coefficient (ADC) of phosphorus in rockfish diets (P<0.05) containing 30% and 40% soybean meal regardless of the level and method of phytase supplementation. Supplementation of phytase significantly increased the ADC of dry matter in diets containing 30% soybean meal (P<0.05). However, phytase had no influence on growth performance and whole body composition of fish. The pretreatment of soybean meal with 1000 U phytase improved weight gain (WG) when 30% fish meal protein was replaced by soybean meal. Based on the experimental results, we conclude that supplementation of phytase can improve the apparent digestibility coefficient of phosphorus in Korean rockfish.  相似文献   

5.
Two digestibility trials and two growth trials were carried out to evaluate the influence of top‐sprayed phytase on apparent digestibility coefficients (ADCs) of protein and mineral and utilization in rainbow trout fed with soybean meal‐based diets. In Trial 1, a semi‐purified diet containing 50% soybean meal was supplemented with graded levels of phytase (0, 500, 1000, 2000 and 4000 U kg?1 diet), and fed to triplicate groups of fish. In Trial 2, commercial‐type extruded feeds containing 36% soybean meal with either 0 or 2000 U phytase kg?1 were fed to five replicate groups of fish. Phytase clearly decreased phytic acid content of feces from 35 to 5 mg and from 34 to 14 mg phytic acid per g faecal dry matter in Trials 1 and 2 respectively. Apparent digestibility coefficient of P improved from 23% to 83% in Trial 1 and from 35% to 54% in Trial 2 by phytase. Apparent protein increased by 1.2% and 3.2%‐units by phytase in Trials 1 and 2. Zinc digestibility was significantly increased in Trial 1, but not in Trial 2. Trials 3 and 4 were conducted to evaluate the influence of phytase on dietary P (Trial 3) and lysine (Trial 4) utilization. Three diets were prepared for each trial: P (Trial 3)‐ or lysine (Trial 4)‐deficient basal diets, basal diets with phytase supplementation (2000 U kg?1) and P (Trial 3)‐ or lysine (Trial 4)‐fortified diets. Rainbow trout (initial weight 20 g) were fed for 10 weeks using four and six replicates for Trials 3 and 4 respectively. Phytase increased P utilization in Trial 3 as demonstrated by an increase in vertebra ash from 24.1% to 45.4%, and by an increase in weight gain from 243% to 459% of the initial weight. Phytase did not increase lysine utilization, since neither protein retention nor weight gain were enhanced by phytase. Supplemental lysine increased protein retention and weight gain to 43.1% and 514%, respectively, and also decreased whole‐body lipid contents significantly from 120 to 123 g kg?1 in fish fed the basal diet and phytase‐supplemented diet to 106 g kg?1 in fish fed with lysine‐fortified diet.  相似文献   

6.
Balance trials were conducted with African catfish Clarias gariepinus to assess the effect of phytase treatment of soybean meal-based diets on growth, feed utilization and nutrient budgets. Isocaloric (20–22 kJ g−1) and isonitrogenous (47–50% protein) diets were tested. In a first experiment the control diet (58% fish meal and 18% soybean meal) was compared with two diets containing 6% fish meal and 69% soybean meal, and two diets containing 29% fish meal and 41% soybean meal. One of each of these two diets had been pretreated with phytase (1000 units per kg dry diet). In the second experiment, the control diet (6% fish meal and 69% soybean meal, pretreated with 1000 units phytase kg−1 dry diet) was compared with four diets that were similar in composition but supplemented with increasing amounts of phytase (15, 380, 750, 1000 units kg−1 dry diet). Replacement of fish meal by soybean meal in the first experiment led to a depression in growth rate and feed utilization parameters. Results of both experiments clearly indicated a positive effect of phytase treatment, particularly on phosphorus digestibility and retention, and consequently the phosphorus conversion efficiency and the phosphorus budget. No differences in these parameters were found between addition of equal amounts of phytase by pretreatment or supplementation.  相似文献   

7.
Aquaculture of yellow perch (Perca flavescens) has been increasing, yet there have been few nutritional studies and no evaluations of alternative protein sources in diets. Solvent‐extracted, dehulled soybean meal (SBM) and expelled‐extruded soybean meal (exSBM) were fed to yellow perch to evaluate their effectiveness in replacing dietary fish meal (FM) in isonitrogenous practical feed formulations. Both soy ingredients were incorporated in graded amounts from 100 to 730 g kg−1 of the diet. Feed consumption, weight gain, feed efficiency (FE) and survival were significantly affected by type of soy ingredient, concentration and the interaction of the two main effects. Consumption was significantly lower in fish fed diets containing 400, 600 and 730 g kg−1 compared to fish fed diets containing lower concentrations. Weight gain was significantly lower in fish fed diets containing 600 g kg−1 and FE significantly lower in fish fed diets containing 500 g kg−1 compared to fish fed the control diet or lower concentrations of soy ingredients. Most fatty acid concentrations were affected by feeding exSBM compared to fish fed the control diet, but long chain fatty acids remained at relatively high concentrations. Based on feed consumption, weight gain and FE data, yellow perch are able to effectively utilize both soy ingredients in practical diets. A conservative recommendation of 300 g kg−1 diet appears appropriate for growout diets.  相似文献   

8.
Apparent digestibility coefficients of dry matter, crude protein, lipid and energy, and amino acids availability in white fish meal, brown fish meal, meat meal, fermented soybean meal, soybean meal and rapeseed meal were determined for loach (Misgurnus anguillicaudatus) (12.05 ± 0.21 g), using a reference diet with 5 g kg?1 chromic oxide and test diets that contained 700 g kg?1 reference diet, by weight, and 300 g kg?1 of the test feed ingredients. The juvenile loach was held in 300‐l tanks at a density of 30 fish per tank. White fish meal, brown fish meal, meat meal and fermented soybean meal had highest apparent digestibility coefficients (ADCs) of dry matter, crude protein and gross energy among ingredients tested, ranged from 50.4% to 60.9% for dry matter, from 64.6% to 88.4% for crude protein and from 57.9% to 79.0% for gross energy. The apparent digestibility coefficients of dry matter ranged from 61.0% to 66.9% for animal products and 50.4% to 60.7% for plant products. For crude protein, apparent digestibility coefficients of protein exceeding 80% were observed for white fish meal, brown fish meal, meat meal and fermented soybean meal, and the apparent digestibility coefficients of protein in rapeseed meal were the lowest among all the treatments. Lipids from both animal and plant feedstuffs were poorly digested by loach, ranging from 64.0% to 77.6%. The apparent digestibility coefficients of energy were similar to those of dry matter and protein, and the highest and lowest ADCs of energy were found in WFM and RM, respectively. The loach used dietary phosphorus from the animal feedstuffs more efficiently than from plant feedstuffs (soybean meal and rapeseed meal), with ADC‐values ranging from 42.3% to 53.1% and from 25.1% to 32.7%, respectively. For the animal products, the availabilities of amino acids in white fish meal and brown fish meal were higher than that in meat meal, expect for Met, Asp, Pro, Gly, and Cys. Among all the plant products, the availabilities of amino acids in fermented soybean meal were higher than in soybean meal and rapeseed meal, and thus had a greater potential to be used as a dietary replacement of fish meal in loach diets.  相似文献   

9.
The 8‐week experiment was conducted to evaluate the effects of partial replacement of fish meal (FM) with soybean protein concentrate (SPC) on juvenile black sea bream, Acanthopagrus schlegelii (10.70 ± 0.04 g). Diets were formulated to replace FM protein by SPC at 0, 8, 16, 24, 32 or 40% (designated as T1, T2, T3, T4, T5 and T6, respectively). Diets except T1 were supplemented with phytase at 2000 phytase activity U kg?1. The results showed that survival rate, growth performance and feed utilization were not significantly affected by increasing dietary SPC. Fish fed diet T3 had higher feed intake compared to those fed T1, T2 and T5 diets. Whole body compositions of black sea bream were significantly influenced by SPC replacing FM except for protein, ash and phosphorus content. Condition factor of fish was significantly lower in T2 than that of fish in T3 group. Apparent digestibility coefficients (ADCs) of dry matter was higher in fish fed T6 diet than those of fish fed T1 and T2 diets, ADCs of phosphorus increased with dietary SPC level up to T3 and then decreased. The results obtained in this study indicate that FM protein could be effectively replaced by SPC protein with phytase in diet of black sea bream.  相似文献   

10.
A 2 × 2 × 2 factorial experiment was designed to study the main effect of dietary microbial phytase, citric acid, crude protein (CP) level and their interactions on growth performance, nutrient digestibility and body composition of Labeo rohita juveniles. Two basal diets were formulated using plant‐based ingredients containing either sub‐optimum (25%) or normal (35%) CP levels. Both the diets were supplemented with microbial phytase (U kg−1) and citric acid (%) at the level of 0, 0; 500, 0; 0, 3; and 500, 3 respectively. One hundred and twenty L. rohita juveniles (average weight 12.61–13.72 g) were randomly distributed in eight treatments, each with three replicates. Dietary microbial phytase alone had no significant effect on whole‐body ash content but addition of citric acid (3%) in the diet activated the phytase as evidenced by their significant interaction. A significant interaction between citric acid and microbial phytase was also found on weight gain%, specific growth rate, protein efficiency ratio. Increasing the dietary CP level from 25% to 35% significantly (P<0.01) decreased phosphorus and dry matter digestibility. Thus, these results showed that the growth‐promoting effect was higher in groups fed a sub‐optimum protein (25%) diet containing both 3% citric acid and 500 U kg−1 of microbial phytase than those fed 35% CP diets. This suggests that microbial phytase and citric acid in sub‐optimum CP diet had a synergistic effect on nutrient digestibility and growth performance of L. rohita juveniles.  相似文献   

11.
An 8-week feeding trial was conducted with cobia to determine the amount of soybean meal that could replace fish meal in formulated diets without reducing growth. Juvenile cobia (initial mean weight, 32 g) were fed 48% crude protein diets in which dietary protein was supplied by brown fish meal or a mixture of hexane extracted soybean meal and the fish meal, resulting in 10%, 20%, 30%, 40%, 50% and 60% of fish meal protein being replaced by soybean protein. The fish readily accepted all seven experimental diets and no fish died during the trial. Detrimental effects on growth performance were obvious when half of the fish meal protein was replaced by soybean protein. There existed a significant difference in fish weight gain, feed conversion ratio (FCR), protein efficiency ratio (PER) and net protein utilization (NPU) when the replacement level for fish meal protein was increased from 40% to 50%, indicating that up to 40% of fish meal protein can be replaced by soybean meal protein without causing reduction in growth and protein utilization. On the other hand, quadratic regression analysis shows a growth optimum at 16.9% replacement of fish meal protein by soybean meal protein. Lipid concentrations in the cobia muscle increased significantly as dietary soybean meal increased. Muscle concentrations of free threonine and histidine decreased as use of the soybean meal increased in the diets. Since methionine concentration in the test diets decreased from 2.52 to 1.36 g 16 g−1 N as the soybean meal protein replacement level was increased from 0% to 60% while all other essential amino acids remained relatively constant, dietary requirement of methionine was calculated assuming it was equally available between the two proteins. The broken-line model analysis based on fish weight gain shows a breakpoint when dietary methionine+cystine concentration was 2.66 g 16 g−1 N or 1.28 g 100 g−1 diet.  相似文献   

12.
An 8‐week experiment was conducted to evaluate the effects of dietary fish meal (FM) replaced by soybean protein concentrate (SPC) on Japanese strain of soft‐shelled turtle, Pelodiscus sinensis juveniles. Diets were formulated to replace FM protein by SPC at 0, 15, 30, 45, 60 or 60% supplemented with phytase (2000 FTU kg?1) (designated as S0, S15, S30, S45, S60 and S60P, respectively), and each diet was fed to triplicate groups. The results showed that the growth was significantly lower when dietary SPC replaced more than 45% FM. The turtles fed the S15 or S30 diet showed comparable feed and protein utilization efficiency compared with the S0 group, whereas more than 30% replacement of FM adversely affected these values. Increasing dietary SPC levels significantly lowered the apparent digestibility coefficients (ADC) of dry matter, protein, lipid, phosphorus and gross energy. Whole‐body protein, ash and phosphorus content showed a declining trend when dietary SPC levels increased, while body lipid and moisture content were unaffected. When the turtles were fed diets with increasing levels of SPC, serum total protein concentration, alkaline phosphatase and catalase activities decreased with a corresponding increase in glutamic pyruvic transaminase activity. Turtles fed the S60P diet showed comparable growth performance and feed utilization efficiency to the S40 group, and were superior to the S60 group. The present study showed that SPC could successfully substitute for 30% FM protein in the diets for P. sinensis juveniles, and the maximum effective substitution may be greater if exogenous phytase was added.  相似文献   

13.
The effect of dietary protein level on the apparent digestibility coefficient (ADC) of meat and bone meal and rapeseed meal for Nile tilapia Oreochromis niloticus L. was examined. Three reference diets were formulated to contain 240 (RD24), 350 (RD35) and 450 (RD45) g kg?1 crude protein, and chromic oxide was added at 10 g kg?1 in the reference diets as an inert indicator. Six test diets were formulated by mixing one of the reference diets with each test ingredient at a ratio of 70:30. Fish (initial body weight 101.0 ± 0.6 g) were fed reference diets for 3 days and then fed test diets in the following 4 days cyclically for 4 weeks. Faeces of fish fed each reference diet or test diet was collected from the third day of each diet conversion. Dietary protein level significantly affected the ADC of protein and energy of reference diets, test diets and test ingredients. The ADC of protein and energy of meat and bone meal and rapeseed meal was the highest when these ingredients were mixed with diet RD35. The scope of variation in the ADC of protein and energy of meat and bone meal was 8% (from 69.9% to 78.3%) and 8% (from 70.2% to 78.0%), and the scope of variation in the ADC of protein and energy of rapeseed meal was 4% (from 79.8% to 83.3%) and 5% (from 56.0% to 60.7%) when the dietary protein level was increased from 300 to 480 g kg?1. This indicates that the ADC of protein and energy of meat and bone meal and rapeseed meal for Nile tilapia varied considerably at different dietary protein levels.  相似文献   

14.
The value of defatted soybean meal as a protein source for sea bream fingerlings (15.2±4.4 g on average) growing to market size (300–350 g) was evaluated by feeding extruded isonitrogenous and isoenergetic diets (46% protein and 22 MJ kg−1) containing 20%, 30%, 40% and 50% soybean meal considering two phases. On day 87, the fish weight ranged between 66 and 81 g. The specific growth rate (SGR) of sea bream fed 50% soybean was lower (1.73% day−1) than that of fish fed 20% (1.87% day−1) and 30% (1.93% day−1), but the food conversion ratio (FCR) was not significantly affected, and a quadratic significant trend was observed for the feed intake (FI) in relation to the dietary soybean level. At the end of the second phase on day 309, fish weight was between 303 and 349 g, but SGR and FCR were similar for all diets, and ranged between 0.64 and 0.69% day−1, and 1.95 and 2.10% day−1 respectively. The final biometric parameters were not affected by the diets, although the levels of some free amino acids in the muscle were affected. Sensory differences were detected by panellists in fish fed diet 20% as compared those fed diet 50%, which had a less marine flavour and was less juicy. The global growth results suggest the possibility of feeding sea bream weighing less than 80 g with 30% soybean meal, and for fish weighing more than 80 g, a 50% dietary soybean meal can be used until the fish reach commercial weight, with no negative effects on growth or feed efficiency. Nevertheless, when sensory analysis and economic aspects are considered, the maximum inclusion level of soybean was 20–22%.  相似文献   

15.
A long‐term feeding experiment was conducted to investigate the use of cottonseed and soybean meal (CS) with iron and phosphorus supplements in diets for olive flounder (Paralichthys olivaceus). Olive flounder with an initial average size of 28.5 ± 0.35 g (mean ± SD) were divided into 15 groups (three tanks per dietary treatment) and fed 480 g kg?1 crude protein diets in which each of five isonitrogenous diets was formulated to contain different levels of cottonseed/soybean meal (1 : 1) to replace fish meal (FM) with iron and phosphorus supplementations. The five experimental diets were as follows: diet 1 (control), 0%CS; diet 2, 20%CS; diet 3, 30%CS; diet 4, 30%CS + Fe&P; and diet 5, 40%CS + Fe&P. After 26 weeks of feeding trial, no significant differences were observed in weight gain, feed utilization and survival among all the treatments. The total gossypol accumulation in liver of fish fed diets supplemented with iron was significantly lower than that of fish fed diets without supplementation of iron. The results indicate that the addition of iron in diets could prevent the absorption of free gossypol. The findings in this study suggest that dietary supplements of iron and phosphorus could increase the inclusion of cottonseed and soybean meal for FM replacement in diets for marine fish species.  相似文献   

16.
The effect of a supplemental fungal phytase on performance and phosphorus availability by juvenile rainbow trout fed diets with a high inclusion of plant based protein and on the magnitude and composition of the waste phosphorus production was tested in a 2 × 3 factorial design at a temperature of 11 °C. Two factors comprised of two dietary fungal phytase levels (0 or 1400 U kg? 1 feed? 1), and three dietary total phosphorus levels (0.89, 0.97 or 1.12%). All fish were acclimated to the lowest total phosphorus diet for 16 days, which included 0.29% phytate-phosphorus and no supplemental fungal phytase, to ensure that they were depleted of phosphorus prior to the feeding trial.Growth and feed conversion ratios were not significantly affected by the increasing dietary phosphorus level or supplemental fungal phytase. Phosphorus availability increased significantly as a result of phytase supplementation, reaching an upper level of 74% at an available dietary phosphorus concentration of 0.71%. Adding fungal phytase to the diets improved the availability of phytate-phosphorus from an average of 6 to 64%. The fish retained 53–79% of the ingested phosphorus, while 24–44% was recovered in the faeces. The particulate phosphorus waste output was significantly higher in faeces from fish fed diets without fungal phytase compared to fish fed phytase supplemented diets. The dissolved/suspended phosphorus waste output represented 2–13% of the ingested phosphorus, and there was a significant increase in the dissolved/suspended phosphorus waste output from fish fed the phytase supplemented diet containing 0.71% available phosphorus, suggesting that the phosphorus requirement was reached at this phosphorus level. Consistent with this, there was a substantial increase in the dissolved/suspended phosphorus waste output from fish fed the phytase supplemented diet containing 0.81% available phosphorus, suggesting that the phosphorus requirement was exceeded in this group.This study demonstrated that phytase supplementation will be advantageous to the fish and the environment if supplemented to low-phosphorus diets containing a large share of plant-derived protein. Conversely, the results demonstrated that fungal phytase should not be supplemented to diets in which the available phosphorus level already meets the requirement of the fish, as this will lead to a significant increase in the dissolved/suspended phosphorus waste output.  相似文献   

17.
Fishmeal (FM) is increasingly being replaced by plant proteins which are a relatively poor phosphorous source for mineralized tissues. To promote P availability plant‐based feedstuffs are supplemented with exogenous phytase. However, the effect of phytase on skeletal development in juvenile rainbow trout (Oncorhynchus mykiss) which have distinct mineral requirements is poorly understood. To address this juvenile trout were fed FM diet, a replacement feed (soybean meal, SBM) in which 50% (460 g kg?1) of crude protein (from FM) was substituted with soybean‐meal or SBM supplemented with microbial or corn‐expressed phytase. Vertebral and scale morphology, remodelling and mineralization were then assessed by histomorphometric and colorimetric assays. Body weight and SGR of trout fed SBM was lower than FM fed fish with no improvement noted with any phytase supplement. Vertebral mineral content and autocentrum morphology were similar in trout fed SBM or FM and supplementation with microbial‐phytase did not enhance these parameters at any concentration. However, scale and vertebral mineral content were significantly enhanced in trout fed SBM supplemented with corn‐expressed phytase 1500 FTU kg?1 (vertebral phosphorus P = 0.014, Ca P = 0.026; scale phosphorus P = 0.012). Thus, SBM feeds supplemented with corn‐expressed phytase could help reduce FM usage and generate a more robust skeleton less prone to deformity.  相似文献   

18.
The effect of replacing fish meal with soybean meal (SBM) pretreated with phytase on feeds of juvenile rainbow trout was evaluated in a 90-day feeding trial. The rainbow trout (initial body weight, 4.01 ± 0.02 g) were fed five isonitrogenous (crude protein, 44.97%) and isolipidic (crude lipid, 13.42%) feeds. Diets were formulated to contain phytase-pretreated SBM replacing 0, 20, 40, 60 and 80% of fish meal protein, respectively. The results showed that there was no significant difference in weight gain (WG) among fish fed S0, S20, S40 and S60 diets; however, a significant reduction of this variable occurred when 80% of fish meal protein was replaced by phytase-treated SBM (P < 0.05). Similarly, specific growth rate and protein efficiency ratio had a similar trend with WG. Apparent digestibility coefficient (ADC) of protein and lipid in the S80 diet was significantly lower than that of the other diets, and the ADC of phosphorus significantly increased with the increase of dietary phytase-treated SBM level. No significant differences among treatments were detected for moisture, protein, lipid and ash content in whole body and muscle samples. Nitrogen and phosphorus excretion indicated that fish meal replacement by phytase-treated SBM led to an increase in nitrogen excretion, but led to a reduction in total phosphorus excretion. The results of the present study show that 60% of fish meal could be replaced by phytase-treated SBM in diets of juvenile rainbow trout without compromising weight gain or feed efficiency. A quadratic equation according to regression analysis of weight gain against dietary phytase-treated SBM level indicated that the optimal level of dietary phytase-treated SBM replacement for maximum growth was 26.90%.  相似文献   

19.
The present study examined the effects of four prebiotic compounds on nutrient and energy digestibility of soybean‐meal‐based diets by red drum (Sciaenops ocellatus). The experimental diets contained 40% crude protein of which approximately half was provided by soybean meal with the remainder from menhaden fish meal. The four prebiotics GroBiotic®‐A (a mixture of partially autolysed brewers yeast, dairy ingredient components and dried fermentation products), mannanoligosaccharide (MOS), galacto‐oligosaccharide (GOS) and inulin were individually added to the basal diet at 1% by weight. A diet with all its protein provided by menhaden fish meal was also included as a control. This control diet had the highest apparent digestibility coefficient (ADC) values – 87% for protein, 87% for lipid, 78% for organic matter and 83% for energy. The basal soybean‐meal‐based diet supplemented with GroBiotic®‐A, GOS and MOS had significantly (P<0.05) increased protein (82%, 82%, 82% respectively) and organic matter ADC values (69%, 64%, 66% respectively), compared with the basal diet (69% for protein and 49% for organic matter). However, the lipid ADC values were significantly decreased for fish fed with the diets supplemented with inulin, GOS and MOS (63%, 61%, 61% respectively) compared with the basal diet (77%) but not for those fed GroBiotic®‐A (82%). Energy ADC values were also increased in fish fed with the GroBiotic‐A®, GOS and MOS diets (73%, 70%, 72%), compared with the basal diet (57%); however, fish fed with the inulin diet had an energy ADC value (54%) similar to that of fish fed with the basal diet. Thus, the present study is the first to demonstrate that nutrient and energy digestibility of soybean‐meal‐based diets by red drum can be enhanced with prebiotic supplementation.  相似文献   

20.
A 6‐week growth trial was conducted to investigate the effect of dietary supplementation with maggot meal (MGM) and soybean meal (SBM) on the growth performance and antioxidant responses of gibel carp (GC) and darkbarbel catfish (DC). The basal diet was formulated to contain 114 g kg−1 fish meal (FM) and 200 g kg−1 SBM. The basal diet was supplemented with either 280 g kg−1 FM (Control), 390 g kg−1 MGM or 450 g kg−1 SBM to obtain three isonitrogenous (crude protein: 380 g kg−1) and isocaloric (gross energy: 16 kJ g−1) diets. For GC, a significant decrease in specific growth rate (SGR) was only observed in fish fed the SBM diet compared with the control (< 0.05). Principal components analysis (PCA) of GC showed a higher similarity in antioxidant response to dietary supplementation with MGM and SBM proteins between liver and intestine, but the DC did not. The present results suggest that supplementing 390 g kg−1 MGM protein to basal diet cause an enhancement of the antioxidant capacity in GC, but supplementing 390 g kg−1 MGM and 450 g kg−1 SBM proteins to basal diets resulted in a significant attenuation of the antioxidant capacity in DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号