首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.  相似文献   

2.
转基因鱼研究及商品化展望   总被引:2,自引:0,他引:2  
目前,转基因技术是农业和医药行业的研究热门。自1985年,世界上第一批转基因鱼诞生后,鱼类基因转移技术很快应用到培育高产、优质和抗逆的经济鱼类新品种,并在解决分子生物学、发育生物学和基因转移等方面的难题中发挥着重要作用。近几年,“全鱼”生长激素(GH)基因的克隆与应用,使快速生长转GH基因鱼的研究取得了突破性进展,但仍需要解决转移基因的定位整合、稳定表达和遗传,以及转基因鱼释放的生态和食品安全性等问题。  相似文献   

3.
GH-transgeniccoho salmon (Oncorhynchus kitsutch) juveniles were fed diets containing 3,5,3-triiodo-L-thyronine (T3; 30 ng/g fish) or 6-n-propyl-2-thiouracil (PTU; 20 ug/g fish), to assess the effect of these drugs on the physiology, growthand survival in comparison with untreated transgenicand non-transgenic salmon. After 84 days, food intake, feed efficiency, survival, growth, hepato-somatic index (HSI), viscera-somatic index (VSI), plasma L-thyroxine (T4), T3and growth hormone (GH) levels,and cranial morphological abnormalities were determined. Growth of transgenic salmon was significantly faster than the nontransgenic salmon,and was increased by exogenous T3and reduced by PTU. Food intake of transgenic salmon was higher than that of the nontransgenic group, but was reduced by exogenous PTU administration. Food conversion efficiency of transgenic salmon was lower than that of nontransgenic salmon,and also was increased by T3 but reduced by PTU in the transgenic fish. The survival rate in all transgenic groups was significantly higher than that of nontransgenic,and transgenic T3and PTU treatment groups showed higher survivals than the transgenic-control group. The HSIand VSI of the transgenic fish were higher than the nontransgenic fish;and both parameters in the transgenic salmon were increased by PTU, but reduced by T3. The plasma T4 level in transgenic salmon was approximately 1.5-fold higher relative to the nontransgenic fish, whereas no difference was observed among the transgenic groups. Plasma T3 levels in transgenic salmon were also approximately 2-fold higher relative to the nontransgenic fish. However, the plasma T3 level in transgenic animals was increased by exogenous T3 administration, but was reduced by exogenous PTU to that observed in nontransgenic salmon. The plasma GH level of transgenic fish was higher than that of the nontransgenic salmon,and the level was increased by the exogenous T3, whereas exogenous PTU did not reduce significantly GH levels in transgenic salmon. Transgenic fish also displayed cranium, jawand opercular abnormalities typical of the effects of this gene construct incoho salmon, indicating that some imbalance in growth processes has been induced. However, these abnormalities (especially cranial disruptions) were diminished by administration of exogenous PTU. In conclusion, exogenous T3and PTU treatments can induce hyperthyroidismand hypothyroidism, respectively,and have inverse effects on growthand skeletal abnormalities of transgenic salmon constitutively expressing GH.  相似文献   

4.
This study compared the ability of juvenile non-transgenic (NT) and transgenic growth hormone (T; gene construct OnMTGH1) coho salmon (Oncorhynchus kisutch) to metabolically utilize energy from lipid and carbohydrate for growth at two dietary protein concentrations. Triplicate groups of size-matched (initial weight, 28.2–29.1 g) NT and T salmon held in 10.5–10.8 °C well water on a natural phototocycle (12.25 h → 8.25 h) were each fed one of four isoenergetic (~ 17.5 MJ of digestible energy (DE)/kg) dry diets twice daily to satiation for 83 days. These diets contained 340 g (LP) or 430 g (HP) of estimated digestible protein (DP)/kg and either 123 g (LL) or 164 g (HL) of estimated digestible lipid (DL)/kg at each DP level (dry weight basis). Estimated digestible carbohydrate (DCHO) concentrations ranged from 45 to 269 g/kg to equalize dietary DE. Under the preceding conditions 46–66% of NT and 18.7–27.5% of T coho, depending upon diet treatment, exhibited no growth or lost weight during the study. NT coho are known to grow slowly or lose weight between the fall equinox and winter solstice but this was unexpected for T coho. Considering all fish T coho, regardless of diet treatment, exhibited significantly higher specific growth rates (SGR) than NT fish due to enhanced feed intake, feed and protein (gross and available deposited) utilization and generally improved available energy utilization. Diet treatment did not affect the growth performance of T fish. Within NT fish, the HP diets supported best gross and available protein and energy utilization. SGR values for growing fish (FG) only followed identical trends to those for all fish in relation to diet treatment. Regardless of fish genotype, terminal hepatosomatic indices for FG were directly related to dietary DCHO content and maximum values were noted in NT fish fed LP–LL (significantly higher than observed in NT or T fish fed HP–HL). Final whole body protein concentrations adjusted for dissimilar fish size were higher in T fish fed HP–HL than in T fish fed LP diets and NT fish fed LP–LL. This was also true for T fish fed HP–LL versus T fish fed the LP diets. Within HP groups, whole body lipid and energy contents were generally higher in NT versus T fish whereas within the LP groups energy content was significantly higher in T versus NT fish and was highest in T fish fed LP–LL. Terminal plasma titres for GH and IGF–1 (all fish) were significantly higher in T than in NT fish and were generally uninfluenced by diet treatment. Non-growing NT and T fish had elevated GH relative to NT and T fish that grew. Also, GH was higher in growing T fish relative to growing NT fish whereas the opposite was true in non-growing fish. Plasma IGF-1 levels were higher in growing NT and T fish than in their respective non-growing counterparts. Within FG only, IGF-1 levels were higher in T versus NT fish.It is concluded that T coho have enhanced ability to effectively utilize DE from DCHO relative to NT fish especially when DP is near the bottom of the optimal range and DL is concurrently suboptimal for NT fish. This is likely due to the elevated titres of GH, IGF-1 and 3,5,3′-triiodo-l-thyronine (measured in another study) in T fish. Also, the enhanced ability of T fish to store energy under these dietary conditions suggests enzymatic improvements in their anaerobic and aerobic metabolism of glucose.  相似文献   

5.
The biology of salmon growth hormone: from daylight to dominance   总被引:2,自引:0,他引:2  
The elucidation of the molecular structure of salmon growth hormone (GH) in the mid-1980's paved the way for a new era of endocrinological research. Establishment of homologous immuno- and receptor-assays have made studies of the secretion, tissue and plasma GH levels, GH turn-over and GH receptor concentrations possible. This overview attempts to summarize the present understanding of the biological roles of GH in salmon. Although the involvement of GH in the regulation of physiological processes throughout the salmon life history has yet to be comprehensively explored, the hormone has already been demonstrated to have several important functions. GH is a principal regulator of somatic growth in salmonids. The growth-stimulating effect of GH is probably integrated with that of insulin-like growth factor I (IGF-I), as in later vertebrates. GH stimulates protein synthesis and improves feed conversion during growth. The hormone also promotes lipid and glycogen breakdown as well as gluconeogenesis, functions which are probably of great importance during starvation when GH levels are seen to increase. During parr-smolt transformation of anadromous salmonids, circulating GH levels appear to be governed by environmental cues. Increasing springtime daylength elevates GH levels, and temperature modulates the photoperiod regulation of GH. The seawater-adapting role of GH during the parr-smolt transformation is complex. In freshwater, GH improves hypoosmoregulatory ability by stimulating branchial Na+,K+-ATPase activity and probably also acts in kidney and intestine. Following seawater entry, GH levels and turn-over increase transiently, probably to further increase seawater tolerance. Accumulating in vitro and in vivo data support the conclusion that GH is involved in the regulation of sexual maturation in salmonids although further studies are needed to establish the exact role of GH in this process. GH increases appetite but it is unclear whether the hormone effects the central nervous system directly, or acts indirectly through metabolic changes. GH increases swimming activity as well as dominant feeding behaviour and diminishes anti-predator behaviour of juvenile salmonids. The GH-induced changes of behavioural patterns imply that there exists an ecological trade-off between high growth rate and long-term survival which may explain why natural fish populations normally grow at sub-maximal rates. Current knowledge indicates that GH is an important and multi-functional hormone in salmon and a central mediator of seasonal changes in physiology and behaviour. The regulatory effects of GH are also of great applied interest as they are likely to affect both product quality in aquaculture and long-term survival of released fish.  相似文献   

6.
Possibility of anisakid larvae infection in farmed salmon   总被引:1,自引:0,他引:1  
SUMMARY: Nematodes belonging to the family Anisakidae including Anisakis simplex and Pseudoterranova decipiens are known to cause anisakiasis when their live larvae are ingested by humans. We estimated the possibility of anisakid infection to salmonids, farmed in sea net-pens at Onagawa Bay, Miyagi, Japan, in 1992, 1998 and 1999, by direct examination of the edible muscle and examination of the contents of the alimentary canal. From direct examination of the muscle, no nematode was found in the 249 farmed coho salmon Oncorhynchus kisutch and 40 farmed rainbow trout Oncorhynchus mykiss . In contrast, third-stage larvae of Anisakis simplex were found in seven of 14 wild coho salmon caught in Russia and all the 40 wild chum salmon Oncorhynchus keta caught at Nemuro and Kesennuma in 1998. The stomach and intestines of 521 farmed coho salmon and 40 farmed rainbow trout were examined carefully for the existence of possible carrier organisms such as crustaceans, fish or squid. Such carrier organisms were not found in the stomach and intestines of farmed fish. Thus, we conclude that the possibility of anisakid infection is very low in farmed salmonids.  相似文献   

7.
Thyroid hormones transiently increase during parr-smolt transformation in coho salmon, Oncorhynchus kisutch, and are believed to trigger morphological, physiological, behavioural, and neural changes. The effectiveness of propylthiouracil (PTU) to induce hypothyroidism in smolting coho salmon was determined by immersing coho salmon, Oncorhynchus kisutch, in 30 mg l–1 PTU from May 1, two weeks prior to the consistent annual total thyroxine (TT4) peak in mid-May, until the last sampling date. Plasma was obtained at two sampling dates from control and PTU -treated coho salmon: May 15, during the plasma TT4 peak; and May 26, after the TT4 peak. Radioimmunoassays were used to measure plasma TT4, total triiodothyronine (TT3), free thyroxine (FT4), and salmon growth hormone (sGH). The PTU -treatment inhibited the natural smoltification-related increases in plasma TT4, TT3 and GH levels compared with controls, but PTU-treatment did not affect these hormone levels when they were low. PTU -treatment increased FT4 and decreased TT3 and sGH levels in the May 26 sample. In the May 15 sample, FT4 levels were unaffected by PTU-treatment, whereas TT4 levels were decreased. These data demonstrate the ability of PTU to induce hypothyroidism in salmonids as shown by the decrease in TT4 and TT3. These data demonstrate that PTU treatment by immersion can induce hypothyroidism in salmonids as shown by: (1) the inhibition of the natural increases of TT4 and TT3; (2) the increase in FT4 levels corresponding to the lowered TT3 levels, suggesting an inhibition of thyroxine 5-monodeiodinase activity. We also show for the first time that PTU treatment can lower plasma GH levels in salmonids. This lowering of plasma GH level is associated with the decrease in TT3 levels and the increase in FT4 levels. The PTU induced lowering in GH levels may contribute to the observed changes in FT4 and TT3, since GH is known to increase thyroxine 5-monodeiodinase activity.  相似文献   

8.
Abstract –  To evaluate the effects of habitat, foraging strategy (drift vs. limnetic feeding) and internal prey subsidies (downstream transport of invertebrate drift between habitats) on fish production, we measured the growth of juvenile coho salmon confined to enclosures in flowing (pond inlets and outlets) or standing water (centre of pond) habitats in a constructed river side-channel. The effects of habitat and foraging strategy on fish growth were mediated primarily through habitat effects on prey abundance. Invertebrate drift biomass was nearly an order of magnitude higher at pond inlets relative to outlets. Drift-feeding coho in inlet enclosures grew 50% faster than drift-feeding coho at pond outlets or limnetic feeding coho in the centre of ponds, suggesting that elevated drift at inlets was sufficient to account for higher inlet growth rates. Forty per cent of prey biomass in stomachs was terrestrial in origin. These results indicate that, in addition to dependence on external terrestrial subsidies, streams with alternating slow and fast water (i.e., pool-riffle) sequences are also characterised by internal prey subsidies based on transport of drifting invertebrates from refuge habitats (high velocity riffles) to habitats more suitable for drift-feeding predators (e.g., pools), which may result in higher maximum fish growth in systems where internal subsidises are large. Restoration of small streams to maximise productive capacity for pool-rearing salmonids will require a better understanding of the length and interspersion of habitats that maximises both internal prey subsidies and available rearing habitat for juvenile salmon.  相似文献   

9.
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

10.
Northern pike (Esox lucius) are opportunistic predators that can switch to alternative prey species after preferred prey have declined. This trophic adaptability allows invasive pike to have negative effects on aquatic food webs. In Southcentral Alaska, invasive pike are a substantial concern because they have spread to important spawning and rearing habitat for salmonids and are hypothesised to be responsible for recent salmonid declines. We described the relative importance of salmonids and other prey species to pike diets in the Deshka River and Alexander Creek in Southcentral Alaska. Salmonids were once abundant in both rivers, but they are now rare in Alexander Creek. In the Deshka River, we found that juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) dominated pike diets and that small pike consumed more of these salmonids than large pike. In Alexander Creek, pike diets reflected the distribution of spawning salmonids, which decrease with distance upstream. Although salmonids dominated pike diets in the lowest reach of the stream, Arctic lamprey (Lampetra camtschatica) and slimy sculpin (Cottus cognatus) dominated pike diets in the middle and upper reaches. In both rivers, pike density did not influence diet and pike consumed smaller prey items than predicted by their gape‐width. Our data suggest that (1) juvenile salmonids are a dominant prey item for pike, (2) small pike are the primary consumers of juvenile salmonids and (3) pike consume other native fish species when juvenile salmonids are less abundant. Implications of this trophic adaptability are that invasive pike can continue to increase while driving multiple species to low abundance.  相似文献   

11.
During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week springmigration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility,yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses ofmigrating fish either did not increase during themigration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations inmigrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability ofmigrating smolts to maintain relatively elevated IGF-I levels despiteRestricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance.  相似文献   

12.
The growth of aquaculture has negatively affected the environment due to the high levels of nitrogen excreted by farmed fish. Here we propose that modifying the nitrogen metabolism of the fish themselves using transgenic technology might solve the pollution problem. Growth hormone (GH) is known to increase protein retention and absorption, and is thought to reduce ammonia excretion. Thus, we produced transgenic Nile tilapia (Oreochromis niloticus) that over-expressed the GH gene throughout their bodies. Our findings showed that the food-conversion efficiency of the transgenic fish was 35% higher than that of their non-transgenic siblings. The rearing period required for the transgenic fish to reach a body weight of 20 g was about 75% of that required for non-transgenic fish that were fed the same type and quantity of food. The total amount of ammonium-nitrogen excreted by the transgenic fish was about 69% of that excreted by the wild-type fish over their lifetime. These results suggest that our transgenic approach has the potential to reduce the amount of nitrogen pollution caused by farmed fish. This strategy is a promising option for making aquaculture more ‘eco-friendly’.  相似文献   

13.
The suitability of meals derived from fish processing wastes as the protein fraction in practical diets for hatchery-reared coho salmon was investigated. The study compared the performance of coho salmon fed diets containing three products: a skin-and-bone meal (SB), a deboned meal (DM), and a whole-fish meal (WM) made directly from the fish wastes. A commercial trout diet (CO) was fed to a fourth treatment group. Diets were fed at 3% of body weight per day to juvenile coho salmon for 12 wk. Survival (> 94%) was not significantly different among treatment groups. Average fish weight, feed conversion ratio, whole body proximate and mineral composition, and protein and phosphorus retention were compared. There were no significant differences after 12 wk of feeding in fish weight between WM, DM, and CO, but SB had significantly lower weight and whole body lipid, and significantly higher ash. Compared to WM, DM had a significantly lower feed conversion ratio and higher retention of protein and phosphorus, but these indices were not significantly different from CO. It is concluded that DM is a potentially superior protein ingredient compared to WM, while specific characteristics of SB will limit its use as a protein source in feeds for salmonids. However, SB may prove to be a suitable mineral supplement when added at a low level. Utilization of fish processing wastes in salmonid diets could be a commercially viable alternative to direct disposal of processing wastes.  相似文献   

14.
The feeding habits of juvenile coho salmon, Oncorhynchus kisutch, in the northern California Current were examined using samples from two different time periods (1980–85 and 1998–2003) of highly contrasting oceanographic conditions. The goal was to test the influence of interannual and interdecadal changes in taxonomic composition of prey, feeding intensity, and size spectra of teleost prey. Analyses were done for samples taken both early in the summer (June) shortly after the salmon enter the ocean, and also in late summer (September) following some ocean residency. Fish prey dominated coho salmon diets by weight during most years, but this trend was more pronounced during the 1980–85 sampling period. In terms of numerical composition, the diets were more variable on an interannual basis, but decapod larvae and euphausiids were important prey in most years. Pteropods and copepods were important prey during weak upwelling or El Niño years, whereas euphausiids were important during strong upwelling or otherwise highly productive years. Hyperiid amphipods comprised a substantial proportion of the diets only in 2000. Coho salmon showed highly significant differences in prey composition among years or between decades both in weight and numerical composition. The percentage of empty stomachs was highly variable by year in both June and September, but was significantly different only for September between decades. In contrast, an index of feeding intensity did not show many significant changes in either comparison. However, the relative size ratios for fish prey consumed were highly variable by year, and larger than average fish prey were consumed during 1998, leading to the highest feeding intensity observed.  相似文献   

15.
Juvenile salmonids display highly variable spatial and temporal patterns of early dispersal that are influenced by density‐dependent and density‐independent factors. Although juvenile coho salmon (Oncorhynchus kisutch) movement patterns in streams and their relationship with body mass and growth have been examined in previous studies, most observations were limited to one season or one stream section. In this study, we monitored the movement of juvenile coho salmon throughout their period of residence in a coastal basin to identify prevalent dispersal strategies and their relationships with body mass, growth rates and survival. Our results revealed seasonally and spatially variable movement patterns. Juvenile coho salmon that dispersed to tidally affected reaches soon after emergence remained more mobile and expressed lower site fidelity than those individuals that remained in upper riverine reaches. We did not detect significantly different growth rates between sedentary and mobile individuals. Although a greater proportion of sedentary than mobile fish survived winter to emigrate from the creek in the spring, reach of residence at the onset of winter influenced these survival estimates. Hence, apparent summer‐to‐smolt survival for mobile individuals was greater than for sedentary fish in tidally influenced reaches, whereas in riverine reaches the sedentary strategy seemed to be favoured. Our research identified complex movement patterns that reflect phenotypic and life history variation, and underscores the importance of maintaining diverse freshwater and estuarine habitats that support juvenile coho salmon before marine migration.  相似文献   

16.
A food consumption revolution is taking place in Russia. After decades of severe constraints on food consumption options under the communist regime Russian consumers are now adopting new food products—including seafood products – at a high pace. Since Russian consumers have previously had very limited seafood consumption choices, the market can be seen as an interesting laboratory for investigating consumer responses to products that have previously not been available. Among imported seafood products are both wild and farmed species. Furthermore, Russian imports include both traditional species such as herring, and ‘new’ species such as pangasius. We analyze market integration among seafood products using Russian monthly import prices from 2002 to 2007 on several products, such as herring, salmonids and pangasius. We find that pangasius compete in the white fish segment, and is a price leader. In the salmonids market, farmed salmon trout appears to be the price leader, both in the fresh and frozen market segment.  相似文献   

17.
Piscine reovirus (PRV) was common among wild and farmed salmonids in British Columbia, western Canada, from 1987 to 2013. Salmonid tissues tested for PRV by real‐time rRT‐PCR included sections from archived paraffin blocks from 1974 to 2008 (n = 363) and fresh‐frozen hearts from 2013 (n = 916). The earliest PRV‐positive sample was from a wild‐source steelhead trout, Oncorhynchus mykiss (Walbaum), from 1977. By histopathology (n = 404), no fish had lesions diagnostic for heart and skeletal muscle inflammation (HSMI). In some groups, lymphohistiocytic endocarditis affected a greater proportion of fish with PRV than fish without PRV, but the range of Ct values among affected fish was within the range of Ct values among unaffected fish. Also, fish with the lowest PRV Ct values (18.4–21.7) lacked endocarditis or any other consistent lesion. From 1987 to 1994, the proportion of PRV positives was not significantly different between farmed Atlantic salmon, Salmo salar L. (44% of 48), and wild‐source salmonids (31% of 45). In 2013, the proportion of PRV positives was not significantly different between wild coho salmon, Oncorhynchus kisutch (Walbaum), sampled from British Columbia (5.0% of 60) or the reference region, Alaska, USA (10% of 58).  相似文献   

18.
ABSTRACT:   Dominance, aggression and predator avoidance were compared among farmed, sea-ranched and wild juvenile masu salmon Oncorhynchus masou in laboratory experiments. Domesticated fish (farmed and sea-ranched), which had been exposed to artificial selection, were not dominant against wild fish in pairwise contests, nor did they show greater aggressiveness. Farmed fish did show greater feeding than wild fish. Under chemically simulated predation risk, farmed fish were more willing to leave cover and feed than wild fish, indicating reduced predator avoidance in the farmed fish. Our results indicate that selection for fast growth (domestication) in masu salmon favors fish that respond to food quickly and ignore predation risk.  相似文献   

19.
Abstract. The influence of feeding intensity (food per fish per unit time) on food intake, growth rate and size variation in groups of Atlantic salmon, Salmo salar L., under realistic rearing conditions was investigated. Feeding intensity influenced the pattern of food intake, but daily food intake, growth rate and size variation were negligibly affected, both when the fish were fed to satiation and when they were kept on restricted rations. Food intake in a meal varied considerably. It was negatively correlated with the amount consumed in the previous meal and positively correlated with the time since the previous meal. The overall conclusion, was that feeding intensity per se has no major influence on the profitability of cage-rearing of salmon.  相似文献   

20.
Abstract – After release to the wild, captive reared salmon have shown lower foraging rates on natural prey and impaired ability to avoid natural predators and thus lower survival compared with wild‐born conspecifics. Here, we examine whether captive breeding influences learning of foraging on natural prey and how enriched rearing methods may improve foraging on natural prey by Atlantic salmon (Salmo salar) parr. We reared offspring of hatchery or wild salmon of the same population in either a standard or enriched environment at production‐scale densities. The enriched environment featured submerged overhead shelter, varying water current, depth and direction and consequently alterations in food dispersion. Parr reared in the enriched environment expressed higher feeding rates, and parr of wild origin started to forage earlier on natural prey. The enriched method promoted foraging of hatchery reared parr on natural prey and is easily applicable to commercial production of salmonids for reintroduction or stock enhancement purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号