首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The fluid uptake rate of the posterior intestine of salmonids increases during the parr-smolt transformation. Intestinal fluid uptake in post-smolt Atlantic salmon was investigated after treatment with cortisol and growth hormone (GH), alone or together. Two replicate experiments were conducted in August 1991 and August 1992. Cortisol was emulsified in vegetable shortening and vegetable oil (1:1) and implanted into the peritoneal cavity. GH was administered as intraperitoneal injections in a saline vehicle on days 0 and 2. On days 5 and 6, plasma cortisol levels, gill Na+,K+-ATPase activity, andin vitro measurements of fluid transport rate (Jv) across the posterior intestine were measured. Implants of cortisol elevated the plasma cortisol levels within a physiological range, and resulted in elevated gill Na+,K+-ATPase activity, as expected. The fluid uptake rate across the posterior intestine was roughly doubled by cortisol treatment. GH treatment did not affect intestinal fluid transport, gill Na+,K+-ATPase activity, or plasma cortisol concentrations. The seawater-adapting increase in the rate of fluid uptake by the posterior intestine of smolting salmon is probably stimulated by elevated plasma cortisol concentrations.  相似文献   

2.
In salmonids, growth hormone (GH) stimulates growth, appetite and the ability to compete for food. This study tested the hypothesis that increased GH levels in GH-transgenic coho salmon Oncorhynchus kisutch (Walbaum) increase competitive ability through higher feeding motivation. The transgenic strain of salmon used contained a gene construct consisting of the sockeye metallothionein-B promoter fused to the type 1 growth gene coding region. The transgenic animals (mean size = 250 g) were F1 individuals. In six consecutive feeding trials, the intake of contested food pellets by size-matched pairs consisting of one control (1 year older non-transgenic coho salmon) and one GH-transgenic coho salmon was compared. Pellets were provided sequentially until neither fish took three consecutive pellets; the identity of the fish taking each pellet was noted. Calculated on the three first pellets offered at each feeding trial, the transgenic coho salmon consumed 2.5 times more contested pellets than the controls, supporting the hypothesis that GH transgenesis increases the ability to compete for food. Overall, the transgenic fish consumed 2.9 times more pellets that the non-transgenic controls, indicating a high feeding motivation of the transgenic fish throughout the feeding trials. It appears that GH transgenesis and GH treatments can induce similar changes in the feeding behaviour of salmonids. Depending on how transgenic and wild individuals differ in other fitness-related characters, escaped GH transgenic fish may compete successfully with native fish in the wild.  相似文献   

3.
In salmonids, growth hormone (GH) effectively promotes adaptation of freshwater (FW) fish to seawater (SW), but it has been unclear whether GH has osmoregulatory actions apart from those consequent to an increase in body size. Our objectives were first, to examine the minimum time and dose required for GH to enhance SW adaptation; and second, to optimize the conditions for the acute GH response in developing a convenient GH bioassay based on its plasma ion lowering effect. Trout showed markedly improved SW survival when transferred from fresh water 6, 24, or 48h after a single chum salmon GH injection (0.25 μg/g). Preadapting trout to 1/3 SW enhanced the plasma ion lowering effect of ovine GH (oGH) injected 48h before transfer of the fish to 80% SW. Endogenous plasma GH levels were elevated in control trout switched from low salinities to 80% SW but were depressed in oGH-injected fish after transfer. Under optimal test conditions (1/3 SW preadaptation, 48h pre-transfer injection, and 100% SW final challenge), the reduction in plasma Na+, Ca++, and Mg++ levels of oGH-injected fish was dose-dependent. The oGH doses giving minimum and maximum responses were 50 and 200 ng/g, respectively. In short, GH exerts acute osmoregulatory actions that promote SW adaptation in the absence of changes in body size. Compared with growth GH bioassays, the osmoregulatory assay is superior in economy of time, animal costs, and hormone quantity required and potentially in specificity.  相似文献   

4.
Thyroid hormones transiently increase during parr-smolt transformation in coho salmon, Oncorhynchus kisutch, and are believed to trigger morphological, physiological, behavioural, and neural changes. The effectiveness of propylthiouracil (PTU) to induce hypothyroidism in smolting coho salmon was determined by immersing coho salmon, Oncorhynchus kisutch, in 30 mg l–1 PTU from May 1, two weeks prior to the consistent annual total thyroxine (TT4) peak in mid-May, until the last sampling date. Plasma was obtained at two sampling dates from control and PTU -treated coho salmon: May 15, during the plasma TT4 peak; and May 26, after the TT4 peak. Radioimmunoassays were used to measure plasma TT4, total triiodothyronine (TT3), free thyroxine (FT4), and salmon growth hormone (sGH). The PTU -treatment inhibited the natural smoltification-related increases in plasma TT4, TT3 and GH levels compared with controls, but PTU-treatment did not affect these hormone levels when they were low. PTU -treatment increased FT4 and decreased TT3 and sGH levels in the May 26 sample. In the May 15 sample, FT4 levels were unaffected by PTU-treatment, whereas TT4 levels were decreased. These data demonstrate the ability of PTU to induce hypothyroidism in salmonids as shown by the decrease in TT4 and TT3. These data demonstrate that PTU treatment by immersion can induce hypothyroidism in salmonids as shown by: (1) the inhibition of the natural increases of TT4 and TT3; (2) the increase in FT4 levels corresponding to the lowered TT3 levels, suggesting an inhibition of thyroxine 5-monodeiodinase activity. We also show for the first time that PTU treatment can lower plasma GH levels in salmonids. This lowering of plasma GH level is associated with the decrease in TT3 levels and the increase in FT4 levels. The PTU induced lowering in GH levels may contribute to the observed changes in FT4 and TT3, since GH is known to increase thyroxine 5-monodeiodinase activity.  相似文献   

5.
6.
During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week springmigration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility,yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses ofmigrating fish either did not increase during themigration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations inmigrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability ofmigrating smolts to maintain relatively elevated IGF-I levels despiteRestricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance.  相似文献   

7.
Free plasma thyroxine (FT4) levels were measured in coho salmon, Oncorhynchus kisutch, during parr-smolt transformation (smoltification) using an equilibrium dialysis system followed by a radioimmunoassay. The FT4 data were correlated to total plasma thyroxine (TT4), triiodothyronine (TT3), and growth hormone (GH). Plasma samples were taken weekly from early April to late May, when the salmon where released from the hatchery. Free thyroxine and GH levels increased gradually through smoltification. TT4 levels increased significantly in mid-April and in mid-May. TT3 levels increased in April and remained elevated until late-May after which they declined to the lowest levels. During the first increase in TT4 levels, FT4 levels remained low and TT3 levels did not increase until FT4 levels increased in late-April. In addition, after TT4 levels decreased in late May, FT4 levels remained elevated. These data show that there are differences between the plasma FT4 and TT4 profiles during smoltification. Nevertheless, regression analysis indicates that FT4 levels are highly correlated to the increases in the levels of GH (r=0.73) and TT4 (r=0.70). In addition, GH is less correlated to TT4 and TT3 (r=0.24 and r=–0.46, respectively) compared with FT4 (r=0.73), suggesting a close relationship between the increases of FT4 and GH. In addition, these data suggest that this method of measuring free plasma thyroxine may provide a new tool for studying the timing of thyroid hormone action and regulation during parr-smolt transformation in salmonids.  相似文献   

8.
The focus of this review is on the regulatory mechanisms and the mode of action of GH in salmonids. To stimulate further research, it aims at highlighting areas where numerous important breakthroughs have recently been made, as well as where data are currently lacking. The regulation of GH secretion is under complex hypothalamic control, as well as under negative feedback control by GH and IGF-I. Further, the recently characterized ghrelin is a potent GH secretagogue, and may prove to be a link between feed intake and growth regulation. GH plasma profiles show indications of diurnal changes, but whether salmonids have true pulsatile GH secretion remains to be elucidated. The recent cloning and characterization of the salmon GH receptor (GHR) is a major research break-through which will give new insights into the mechanisms of GH action. It should also stimulate research into circulating GH-binding proteins (GHBPs), as they appear to be a soluble form of the GHR. The salmonid GHR sequences show evolutionary divergence from other fish species, but with a high degree of identity within the salmonid group. Radioreceptorassay studies have found GHR present in all tissues examined, which is in line with the highly pleiotropic action of GH. Data are currently scarce on the plasma dynamics of GH in salmonids, and further studies on GHR and GHBPs dynamics coupled to assessments of GH clearance rates and pathways are needed. The direct versus indirect nature of GH action remains to be clarified, but GH appears to act both locally at the target tissue level to stimulate the autocrine/paracrine action of IGF-I, as well as on the liver to increase plasma IGF-I levels. In addition, GH interacts with other hormones such as cortisol, thyroid hormones, insulin, and reproductive hormones, generating a wide range of physiological effects. GH may act both peripherally and directly at the level of the central nervous system to modify behavior, probably by altering the dopaminergic activity in the brain.  相似文献   

9.
Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 µg g-1) or 3 reGH injections (0.25 µg g-1 every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 µg g-1) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 µg g-1) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70% SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.  相似文献   

10.
Osmoregulatory actions of growth hormone (GH) and its mode of action in salmonids are reviewed. We present evidence suggesting that insulin-like growth factor I (IGF-I) mediates some of the actions of GH on seawater acclimation. Plasma concentration and turnover of GH rise following exposure to seawater. Exogenous GH (in vivo) increases gill Na+,K+-ATPase activity and the number of gill chloride cells, and inhibits an increase in plasma osmolarity and ions following transfer of fish to seawater. A single class of high affinity GH receptors is present in the liver, gill, intestine, and kidney. The levels of IGF-I mRNA in the liver, gill and kidney increased after GH-injection. After transfer to seawater, IGF-I mRNA increased in the gill and kidney following the rise in plasma GH, although no significant change was seen in the liver. Injection of IGF-I improved the ability of the fish to maintain plasma sodium levels after transfer to seawater. GH treatment also sensitizes the interrenal to adrenocorticotropin (ACTH), increasing cortisol secretion. Both cortisol and IGF-I may be involved in mediating the action of GH in seawater adaptation, although studies on the effect of GH on osmoregulatory physiology of non-salmonid species are limited. An integrated model of the osmoregulatory actions of GH is presented, and areas in need of research are outlined.
Résumé Cet article est une revue des effets osmorégulateurs de l'hormone de croissance et de son mode d'action. Nous présentons des résultats qui suggèrent que le facteur de croissance de type insuline (IGF-I) est un médiateur de certaines des actions de la GH sur l'adaptation à l'eau de mer. Les concentrations plasmatiques et le renouvellement de la GH augmentent après transfert en eau de mer. La GH exogène stimule (in vivo) l'activité Na+,K+-ATPase et le nombre de cellules à chlorure branchialeset inhibe les augmentations de l'osmolarité et des concentrations ioniques du plasma observées après transfert en eau de mer. Une seule classe de récepteurs à haute affinité pour la GH est présent dans le foie, les branchies, l'intestin et le rein. Les niveaux d'ARNm d'IGF dans le foie, les branchies et le rein augmentent après injection de la GH. Après transfert en eau de mer, les ARNm de l'IGF augmentent dans les branchies et dans le rein en suivant l'augmentation de GH plasmatique, bien qu'aucune modification ne soit observée au niveau du foie. L'injection d'IGF augmente la capacité du poisson à maintenir ses niveaux de sodium plasmatique après transfert en eau de mer. Le traitement à la GH augmente la sensibilité à l'adrenocorticotropine (ACTH) et stimule donc les niveaux de cortisol. A la fois le cortisol et l'IGF-I semblent impliqués comme médiateurs des effets de la GH dans l'adaptation à l'eau de mer, bien que les études sur les effets de la GH sur la physiologie de l'osmorégulation chez les espèces non-salmonidés restent encore limitées. Un modèle intégré des actions de la GH sur l'osmorégulation est présenté et les domaines de recherche à développer sont soulignés.
  相似文献   

11.
Since somatostatin (SRIF) inhibits the release of growth hormone (GH), its immunoneutralization may provide an alternative to GH therapy as a means of enhancing somatic growth in fish. The present study examined the feasibility of accelerating growth in juvenile chinook salmon by means of antiSRIF administration. Yearling salmon of Nicola River stock (BC, Canada) were injected intraperitoneally every 5 days, for a total of 40 days, with either SRIF (1 μg g-1 body wt.), antiSRIF (SOMA-10, 1 μg g−1), recombinant bovine GH (rbGH, 2.5 μg g−1), recombinant porcine GH (rpGH, 2.5 μg g−1) or saline (controls). No significant differences were observed in length, weight or final condition factor (k) between the SRIF-treated and control fish over the experimental period. However, the fish treated with the antiSRIF were significantly (p ≤ 0.05) longer and heavier than the control salmon after 25 and 30 days respectively. Furthermore, antiSRIF treatment caused a lowering in k when compared to the control salmon. Fish injected with rbGH or rpGH were significantly longer and heavier than all other groups (p ≤ 0.05), after only 5 days. GH treated groups also returned higher k when compared against all other treatments (p ≤ 0.05). No differences were observed in growth between the two rGH treatments over the experimental period.  相似文献   

12.
Atlantic salmon smolts (Salmo salar L.) of wild (Namsen) and farmed (AquaGen) strains were transferred to full-strength seawater (33‰) for 0 (initial control group), 0.5, 1, 2, 4, 8, 14, 30, 42 and 60 days at three different temperatures (4.3, 9.4 and 14.3 °C). Freshwater temperature in each tank was adjusted to test conditions 10 days prior to transfer. Physiological adaptation was monitored as changes in plasma growth hormone levels, gill Na+,K+-ATPase activity, plasma chloride levels and survival in seawater. Overall, smolts from the wild strain were better able to tolerate transfer to seawater than smolts from the hatchery strain. A delay in the osmotic disturbance and a prolonged period of osmotic stress were observed at the low temperature. Circulating GH levels increased transiently in all groups during the first 12–48 h in seawater and long-term GH levels were positively correlated with seawater temperature. Growth rates were influenced by temperature and strain, with the farmed smolts showing a higher growth than the wild smolts. Food Conversion Efficiency (FCE) was higher in smolts from the farmed strain, whereas no differences in daily food consumption were observed. Optimum temperature for FCE was calculated to be 10.5 °C, whereas the optimal temperature for growth in seawater was calculated to be 13.0 °C. We suggest that the observed differences in seawater tolerance, growth and food conversion probably are genetic and may reflect the fact that the hatchery fish have been bred for rapid growth for several generations.  相似文献   

13.
This paper reports on the effect of administration of mammalian growth hormone (GH) on muscle protein synthesis as measured in white muscle using the phenylalanine flooding technique. The effect of exogenous GH was compared with that of insulin and prolactin, and with endogenous GH.The rate of protein synthesis in white muscle of rainbow trout 6 h after the injection of bovine GH or bovine insulin was twice (2.6 and 2.9% d–1) that of the control saline-injected fish (1.2% d–1). A metabolic effect of GH, as observed with insulin, is suspected.The rates of change in body weight and body length and the fractional rate of protein synthesis in muscle of rainbow trout were enhanced by mammalian GH administration. The effect of GH on muscle RNA/protein ratios was not significant. An opposite effect of antibodies against salmon GH (Lebailet al. 1989) on growth rate and muscle protein synthesis rate was found in rainbow trout. It is suggested that the effects of exogenous and endogenous GH on capacity and efficiency of muscle protein synthesis were similar.The long-term effects of mammalian GH on presmolt Atlantic salmon was also tested. The same trends were found with ovine prolactin supplementation in Atlantic salmon but not as high as those observed with ovine GH.  相似文献   

14.
15.
Gradually increasing levels of gill Na+K+ ATPase activity were observed in juvenile chinook, Oncorhynchus tshawytscha, and coho, Oncorhynchus kisutch, salmon and steelhead trout, Salmo gairdneri, undergoing parr-smolt transformation in artificial rearing facilities on the Columbia River. Portions of the same populations released to migrate seaward, however, generally showed much greater increases in enzyme activity with time and distance from the release point. After migrating 714 km to the Columbia River estuary, spring chinook salmon had a mean gill Na+K+ ATPase activity 2.5 times greater than fish retained at the hatchery and 1.9 times greater than fish adapted to 28 ppt seawater for 208 days. Similar observations were made on coho salmon.  相似文献   

16.
GH-transgeniccoho salmon (Oncorhynchus kitsutch) juveniles were fed diets containing 3,5,3-triiodo-L-thyronine (T3; 30 ng/g fish) or 6-n-propyl-2-thiouracil (PTU; 20 ug/g fish), to assess the effect of these drugs on the physiology, growthand survival in comparison with untreated transgenicand non-transgenic salmon. After 84 days, food intake, feed efficiency, survival, growth, hepato-somatic index (HSI), viscera-somatic index (VSI), plasma L-thyroxine (T4), T3and growth hormone (GH) levels,and cranial morphological abnormalities were determined. Growth of transgenic salmon was significantly faster than the nontransgenic salmon,and was increased by exogenous T3and reduced by PTU. Food intake of transgenic salmon was higher than that of the nontransgenic group, but was reduced by exogenous PTU administration. Food conversion efficiency of transgenic salmon was lower than that of nontransgenic salmon,and also was increased by T3 but reduced by PTU in the transgenic fish. The survival rate in all transgenic groups was significantly higher than that of nontransgenic,and transgenic T3and PTU treatment groups showed higher survivals than the transgenic-control group. The HSIand VSI of the transgenic fish were higher than the nontransgenic fish;and both parameters in the transgenic salmon were increased by PTU, but reduced by T3. The plasma T4 level in transgenic salmon was approximately 1.5-fold higher relative to the nontransgenic fish, whereas no difference was observed among the transgenic groups. Plasma T3 levels in transgenic salmon were also approximately 2-fold higher relative to the nontransgenic fish. However, the plasma T3 level in transgenic animals was increased by exogenous T3 administration, but was reduced by exogenous PTU to that observed in nontransgenic salmon. The plasma GH level of transgenic fish was higher than that of the nontransgenic salmon,and the level was increased by the exogenous T3, whereas exogenous PTU did not reduce significantly GH levels in transgenic salmon. Transgenic fish also displayed cranium, jawand opercular abnormalities typical of the effects of this gene construct incoho salmon, indicating that some imbalance in growth processes has been induced. However, these abnormalities (especially cranial disruptions) were diminished by administration of exogenous PTU. In conclusion, exogenous T3and PTU treatments can induce hyperthyroidismand hypothyroidism, respectively,and have inverse effects on growthand skeletal abnormalities of transgenic salmon constitutively expressing GH.  相似文献   

17.
The osmoregulatory ability of chum salmon (Oncorhynchus keta), reared in fresh water for a prolonged period, was examined by transferring them directly to seawater and then back to fresh water. When fry and juveniles weighing 0.3–125g, reared in fresh water for 1.5–13 months, were transferred directly to seawater, they adjusted their plasma Na+ concentration to the seawater-adapted level within 12–24h. When they were transferred back to fresh water after having been adapted to seawater for 2 weeks, the plasma Na+ level gradually decreased during the first 12–24h, and then increased to reattain the initial freshwater level after 5–7 days. No mortality was observed during the experiment except among the smallest fry weighing about 0.3g after transfer to seawater (2.1%). The maintenance of good osmoregulatory ability of the chum salmon for a prolonged period in fresh water seems to be unique among Pacific salmon, with the possible exception of the pink salmon.Changes in plasma levels of hormones during the transfer experiments were recorded in juveniles reared in fresh water for 13 months. Prolactin levels increased maximally 3 days after transfer from seawater to fresh water, as would be expected from its well-established role in freshwater adaptation in several euryhaline teleosts. In addition, an increase in plasma growth hormone was observed during the first 12h after seawater transfer, along with a tendency towards a decrease during freshwater transfer, suggesting an important role for this hormone in seawater adaptation. There were no consistent changes in plasma levels of thyroxine and cortisol during freshwater to seawater or seawater to freshwater transfer.  相似文献   

18.
Whole animal transepithelial potentials (TEP) of yearling coho salmon (Oncorhynchus kisutch) in fresh water and after transfer to seawater were recorded throughout parr-smolt transformation (smoltification) from February to August 1984, along with plasma Na+ and Cl concentrations and osmolality. Based on plasma ion regulation in seawater, the yearling coho in this study completed smoltification and attained sea-water adaptability in April. TEP in freshwater fish decreased (became inside-negative) after smoltification, and the TEP increased significantly (P < 0.01) after seawater transfer. When fish were transferred into seawater, thyroxine increased TEP of the transferred smolts by approximately 30% over the control level (P < 0.01) in April, but this did not occur when freshwater postsmolts were transferred in July and August. Hypophysectomy increased TEP (P < 0.01) in fresh water; it did not affect the TEP of the fish after seawater transfer. Ovine prolactin (3 g/g body weight) implanted into seawater-adapted fish caused a reduction in TEP (P < 0.01) when fish were exposed to fresh water. Whole-animal TEP appears to provide a valuable index of the completion of smoltification (April–May) and a useful tool for investigating the endocrine control of salmonid osmoregulation.  相似文献   

19.
20.
Somatostatins (SS) are a structurally diverse family of peptide hormones that affect various aspects of growth, development and metabolism in vertebrates. Fish have proved to be useful models for understanding the role(s) of SS in the regulation of growth. Organismal growth is inhibited by SS and fish with impaired growth (caused by fasting or premature transfer to seawater of anadromous species) display enhanced SS production and elevated plasma levels of the hormone. Somatostatins modulate growth at the level of the pituitary through the inhibition of growth hormone (GH) synthesis and secretion. There are, however, significant structure-function relationships with regard to GH inhibition. For example, while SS-14 is a potent inhibitor of GH secretion, catfish SS-22 and salmonid SS-25 appear not to have GH secretotropic effects. Somatostatins also have extra-pituitary effects on growth. For example, SS reduce GH binding capacity and inhibit IGF-I mRNA expression in the liver. In addition, SS inhibit insulin, another factor essential to organismal growth. Finally, SS interact with a variety of reproductive and metabolic processes - actions which suggest that SS help modulate energy partitioning among biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号