首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m2 for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m2 in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.  相似文献   

2.
Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles.  相似文献   

3.
Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.  相似文献   

4.
Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecting the optimal bandwidth for the hyperspectral inversion of metal element contents in rocks,the influence of bandwidth on the inversion accuracy are ignored.In this study,we collected 258 rock samples in and near the Kalatage polymetallic ore concentration area in the southwestern part of Hami City,Xinjiang Uygur Autonomous Region,China and measured the ground spectra of these samples.The original spectra were resampled with different bandwidths.A Partial Least Squares Regression(PLSR)model was used to invert Cu contents of rock samples and then the influence of different bandwidths on Cu content inversion accuracy was explored.According to the results,the PLSR model obtains the highest Cu content inversion accuracy at a bandwidth of 35 nm,with the model determination coefficient(R2)of 0.5907.The PLSR inversion accuracy is relatively unaffected by the bandwidth within 5-80 nm,but the accuracy decreases significantly at 85 nm bandwidth(R2=0.5473),and the accuracy gradually decreased at bandwidths beyond 85 nm.Hence,bandwidth has a certain impact on the inversion accuracy of Cu content in rocks using the PLSR model.This study provides an indicator argument and theoretical basis for the future design of hyperspectral sensors for rock geochemistry.  相似文献   

5.
The criteria used by International Union for Conservation of Nature(IUCN) for its Red List of Ecosystems(RLE) are the global standards for ecosystem-level risk assessment, and they have been increasingly used for biodiversity conservation. The changed distribution area of an ecosystem is one of the key criteria in such assessments. The Stipa bungeana grassland is one of the most widely distributed grasslands in the warm-temperate semi-arid regions of China. However, the total distribution area of this grassland was noted to have shrunk and become fragmented because of its conversion to cropland and grazing-induced degradation. Following the IUCN-RLE standards, here we analyzed changes in the geographical distribution of this degraded grassland, to evaluate its degradation and risk of collapse. Past(1950-1980) distribution areas were extracted from the Vegetation Map of China(1:1,000,000). Present realizable distribution areas were equated to these past areas minus any habitat area losses. We then predicted the grassland’s present and future(under the Representative Concentration Pathway 8.5 scenario) potential distribution areas using maximum entropy algorithm(MaxEnt), based on field survey data and nine environmental layers. Our results showed that the S. bungeana grassland was mainly distributed in the Loess Plateau, Hexi Corridor, and low altitudes of the Qilian Mountains and Longshou Mountain. This ecosystem occurred mainly on loess soils, kastanozems, steppe aeolian soils and sierozems. Thermal and edaphic factors were the most important factors limiting the distribution of S. bungeana grassland across China. Since 56.1% of its past distribution area(4.9×10~4 km^2) disappeared in the last 50 a, the present realizable distribution area only amounts to 2.2×10~4 km^2. But only 15.7% of its present potential distribution area(14.0×10~4 km^2) is actually occupied by the S. bungeana grassland. The future potential distribution of S. bungeana grassland was predicted to shift towards northwest, and the total area of this ecosystem will shrink by 12.4% over the next 50 a under the most pessimistic climate change scenario. Accordingly, following the IUCN-RLE criteria, we deemed the S. bungeana grassland ecosystem in China to be endangered(EN). Revegetation projects and the establishment of protected areas are recommended as effective ways to avert this looming crisis. This empirical modeling study provides an example of how IUCN-RLE categories and criteria may be valuably used for ecosystem assessments in China and abroad.  相似文献   

6.
As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,impact assessments of the economic losses caused by reductions in freshwater supply are quite limited.This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios(RCP2.6(RCP,Representative Concentration Pathway),RCP4.5,and RCP8.5)by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial,agricultural,service,and domestic water uses combined with the present value method for the 2030 s,2050 s,2070 s,and 2090 s.The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6%and 74.5%under the RCP4.5 and RCP8.5 scenarios by the 2090 s relative to the baseline period(1980-2010),respectively.Compared to the RCP2.6 scenario,the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×106 and 537.20×106 CNY in the 2050 s and 2090 s,respectively,and the cumulative economic loss value for 2099 is approximately 2124.00×106 CNY.We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses,respectively.The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater.These findings highlight the need for climate mitigation actions,industrial transformation,and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.  相似文献   

7.
The implementation of the Grain for Green Program(GGP)has changed the development track of the agricultural eco-economic system in China.In response to the results of a lag study that investigated the coupling between the GGP and the agricultural eco-economic system in a loess hilly region,we used a structural equation model to analyze the survey data from 494 households in Ansai,a district of Yan’an City in Shaanxi Province of China in 2015.The model clarified the direction and intensity of the coupling between the GGP and the agricultural eco-economic system.The coupling benefits were derived through linkages between the program and various chains in the agricultural eco-economic system.The GGP,the agroecosystem of Ansai and their potential coupling effects were in a state of general coordination.The agroecosystem directly affected the coupling effect,with the standardized path coefficient of 0.87,indicating that the agroecosystem in Ansai at this stage provided basic material support for the coupling between the GGP and the agricultural eco-economic system.The direct path coefficient of agroeconomic system impacted on the coupling effect was-0.76,indicating that partial contradictions occurred between the agroeconomic system and the coupling effect.Therefore,although the current agroecosystem in Ansai should be provided sufficient agroecological resources for the benign coupling between the program and the agricultural eco-economic system,agricultural development failed to effectively transform agroecological resources into agricultural economic advantages in this region,which resulted in a relative lag in the development of the agricultural economic system.Thus,the coupling between the GGP and the agricultural eco-economic system was poor.To improve the coupling and the sustainable development of the agricultural eco-economic system in cropland retirement areas,the industrial structure needs to be diversified,the agricultural resources(including agroecological resources,agricultural economic resources and agricultural social resources)need to be rationally allocated,and the chain structure of the agricultural eco-economic system needs to be continuously improved.  相似文献   

8.
Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming.The Qinghai-Tibet Plateau(QTP)of China is an ecologically fragile zone that is sensitive to global climate warming.It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming.In this study,we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years(2011-2018).We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales,including an early stage of warming(2011-2013)and a late stage of warming(2016-2018),in order to explore the response of alpine meadows to short-term(three years)and long-term warming(eight years).The results showed that the short-term warming increased air temperature by 0.31℃and decreased relative humidity by 2.54%,resulting in the air being warmer and drier.The long-term warming increased air temperature and relative humidity by 0.19℃and 1.47%,respectively,and the air tended to be warmer and wetter.The short-term warming increased soil temperature by 2.44℃and decreased soil moisture by 12.47%,whereas the long-term warming increased soil temperature by 1.76℃and decreased soil moisture by 9.90%.This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming.Furthermore,the degree of soil drought was alleviated with increased warming duration.Under the long-term warming,the importance value and aboveground biomass of plants in different families changed.The importance values of grasses and sedges decreased by 47.56%and 3.67%,respectively,while the importance value of weeds increased by 1.37%.Aboveground biomass of grasses decreased by 36.55%,while those of sedges and weeds increased by 8.09%and 15.24%,respectively.The increase in temperature had a non-significant effect on species diversity.The species diversity indices increased at the early stage of warming and decreased at the late stage of warming,but none of them reached significant levels(P>0.05).Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming.Soil temperature and aboveground biomass were positively correlated in the control plots(P=0.014),but negatively correlated under the long-term warming(P=0.013).Therefore,eight years of warming aggravated drought in the shallow soil layer,which is beneficial for the growth of weeds but not for the growth of grasses.Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity.Our studies have great significance for the protection and effective utilization of alpine vegetation,as well as for the prevention of grassland degradation or desertification in high-altitude regions.  相似文献   

9.
Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies.  相似文献   

10.
The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region,China has undergone in recent years may face some challenges in its ecological environment.Therefore,an analysis of the spatiotemporal changes in ecological environment of the Hotan Oasis is important for its sustainable development.First,we constructed an improved remote sensing-based ecological index(RSEI)in 1990,1995,2000,2005,2010,2015 and 2020 on the Google Earth Engine(GEE)platform and implemented change detection for their spatial distribution.Second,we performed a spatial autocorrelation analysis on RSEI distribution map and used land-use and land-cover change(LUCC)data to analyze the reasons of RSEI changes.Finally,we investigated the applicability of improved RSEI to arid area.The results showed that mean of RSEI rose from 0.41 to 0.50,showing a slight upward trend.During the 30-a period,2.66% of the regions improved significantly,10.74% improved moderately and 32.21% improved slightly,respectively.The global Moran's I were 0.891,0.889,0.847 and 0.777 for 1990,2000,2010 and 2020,respectively,and the local indicators of spatial autocorrelation(LISA)distribution map showed that the high-high cluster was mainly distributed in the central part of the Hotan Oasis,and the low-low cluster was mainly distributed in the outer edge of the oasis.RSEI at the periphery of the oasis changes from low to high with time,with the fragmentation of RSEI distribution within the oasis increasing.Its distribution and changes are predominantly driven by anthropologic factors,including the expansion of artificial oasis into the desert,the replacement of desert ecosystems by farmland ecosystems,and the increase in the distribution of impervious surfaces.The improved RSEI can reflect the eco-environmental quality effectively of the oasis in arid area with relatively high applicability.The high efficiency exhibited with this approach makes it convenient for rapid,high frequency and macroscopic monitoring of eco-environmental quality in study area.  相似文献   

11.
The gradual shrinkage of the Aral Sea has led to not only the degradation of the unique environments of the Aral Sea,but also numerous and fast developing succession processes in the neighborhood habitats surrounding the sea.In this study,we investigated the vegetative succession processes related to the Aral Sea shrinkage in the Eastern Cliff of the Ustyurt Plateau in Republic of Uzbekistan,Central Asia.We compared the results of our current investigation(2010–2017)on vegetative communities with the geobotany data collected during the 1970s(1970–1980).The results showed great changes in the mesophytic plant communities and habitat aridization as a result of the drop in the underground water level,which decreased atmospheric humidity and increased the salt content of the soil caused by the shrinkage of the Aral Sea.In the vegetative communities,we observed a decrease in the Margalef index(DMg),which had a positive correlation with the poly-dominance index(I-D).The main indications of the plant communities'transformation were the loss of the weak species,the appearance of new communities with low species diversity,the stabilization of the projective cover of former resistant communities,as well as the appearance of a new competitive species,which occupy new habitats.  相似文献   

12.
This study seeks a routine to quantify spatial pattern of land cover changes in semiarid environment of China based on post-classification comparison method. The method consists of three major steps: (1) the image classification and unification of classified results based on two-level land cover classification themes, (2) the establishment of land cover change classes based on an unification land cover classification theme, (3) the reclassification and mapping of land cover change classes with three overall classes including no-change, gain and loss based on the unification land cover class. This method was applied to detect the spatial pattern of land cover changes in Yinchuan Plain, one of famous irrigation agricultural zones of the Yellow River, China. The results showed the land cover had undergone a remarkable change from 1991 to 2002 in the study area (the changed area was over 30%). Rapid increase of cropland (12.5%), built-up area (131.4%) and rapid decrease of bare ground (51.7%) were alarming. The spatial pattern of land cover changes showed clear regional difference in the study area and was clearly related to human activities or natural factors. Thus, it obtained a better understanding of the human impact on the fragile ecosystem of China’s semiarid environment.  相似文献   

13.
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.  相似文献   

14.
敖淑平 《植物医生》2008,21(1):10-11
水稻秧苗僵苗的症状表现是植株矮小,叶片细瘦,直立不披散,稻丛呈簇立状,根细而稀,新根少。根据秧苗初期因僵苗程度不同,长相长势有所区别,大致可分3个阶段:发僵,为黄化阶段,叶色较淡,矮小萎黄,锈根多,白根少,呈现出营养不良的症状;以后随着生理缺磷程度的加重,进入蓝化阶段,叶色暗绿发蓝,有的黄中带红,叶片沿纵脉呈环状卷曲,老根直伸向下,根毛稀少,这是由于生理缺磷影响能量代谢,使光合作用产物的运输受到严重阻碍导致的;僵苗严重时为红化阶段,老叶变红色,其余叶片除最新抽出叶呈全绿色外,均有不同程度的叶尖枯焦,远看苗色发红。  相似文献   

15.
董达义 《植物检疫》2008,22(3):187-188
国内农业植物检疫(以下简称植物检疫)是以法律法规为依据、检疫技术为后盾、植物检疫行政许可和执法监督为保障来控制农业有害生物传播、蔓延、危害,达到促进农产品流通,保护农业生态,确保农业生产高产、优质、高效的目的。植物检疫行政许可在植物检疫工作中起着关键的作用。现把江山市2005年以来贯彻实施《行政许可法》和农业部有关农业行政许可规定过程中的有关情况概述如下。  相似文献   

16.
Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpine mountains and at high latitude areas.The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation.To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains,we established a cryospheric hydrometeorology observation(CHOICE)system in 2008 in the Qilian Mountains,which consists of six automated observation stations located between 2960 and 4800 m a.s.l.Total Rain weighing Sensor(TRwS)gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment(WMO-SPICE)were used at observation stations with the CHOICE system.To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges,we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system.Moreover,we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station.The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system.Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters.The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions.Thus,root-mean-square error(RMSE)of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135(353%)and 0.072 mm(111%),respectively.RMSE values of liquid,solid and mixed precipitation measurements corrected by the new parameters decreased by 6%,20% and 13%,respectively.In addition,the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system.The relative precipitation(RP)increment of different types of precipitation increased with rising altitude.The average RP increment value of snowfall at six stations was the highest,reaching 7%,while that of rainfall was the lowest,covering 3%.Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.  相似文献   

17.
苹果蠹蛾[Cydia pomonella(L)]属鳞翅目(Lepidoptera),小卷叶蛾科(Olethreutidae).是世界上最严重的蛀果害虫之一,我国列为一类进境植物检疫性害虫.该虫目前已在亚洲、非洲、欧洲、美洲、大洋洲的部分地区有分布,与我国邻近的阿富汗、印度、巴基斯坦、独联体各国均有分布.在我国最早仅发生于新疆维吾尔自治区,现已扩散到甘肃省境内.为保护我国生态环境和农林生产安全,作者依据国际植物检疫措施标准(ISPM)规定的有害生物风险性分析(PRA)程序,对苹果蠹蛾在我国的风险性进行了分析.  相似文献   

18.
由病原物致病使植株萎蔫的病害有枯萎病、立枯病、疫病、白绢病、根腐病、根结线虫病、病毒病、青枯病,它们共同的特征是植株的根和茎基部受害,这也是田间诊断的依据;生理性萎蔫主要是大气环境或土壤性质等因素引起。应采取“预防为主,综合治理”的植保方针和使用无公害化农药相结合的应急防治措施。  相似文献   

19.
初冬用15%麦极WP 13.3~20 g/667m2、早春用15%麦极WP 20~26.7 g/667m2,对水30~40kg/667m2.可有效防除小麦田看麦娘.  相似文献   

20.
在加拿大一枝黄花盛花期,采用剪除花穗、剪除花穗并短截、砍伐植株,以后再采收加拿大一枝黄花种子,于次年进行种子发芽试验.结果表明,3种处理的加拿大一枝黄花种子发芽率均在0.2%~0.4%之间,与对照有极显著差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号