首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为检测H7N9禽流感病毒(AIV) DNA疫苗的免疫保护效力,本研究将H7N9禽流感疫苗株A/Chicken/Guangxi/SD098/2017 (H7N9)[CK/GX/SD098/17 (H7N9)]的HA基因密码子优化后,定向克隆至载体pCAGGS中构建重组质粒pCA-SD098。将pCA-SD098转染至293T细胞后,采用间接免疫荧光(IFA)和western blot检测,结果显示,HA蛋白可以在293T细胞中正确表达。分别利用15μg和20μg重组质粒pCA-SD098免疫3周龄SPF鸡,3周后以相同的剂量和方式加强免疫,加强免疫一周后通过鼻腔分别感染105EID50的同源高致病性AIV (HPAIV)CK/GX/SD098/17 (H7N9)和异源低致病性AIV (LPAIV) A/Chicken/Chongqing/SD057/2017 (H7N9)[CK/CQ/SD057/17 (H7N9)],攻毒10 d内记录免疫鸡发病和死亡情况,检测免疫鸡HI抗体水平,并于攻毒后第3 d、第5 d和第7 d无菌采集所有鸡的喉头和泄殖腔拭子,采用红细胞凝集试验(HA)检测病毒的滴度。结果显示,重组质粒pCA-SD098免疫后可以诱导SPF鸡产生较高水平的HI抗体,15μg pCA-SD098剂量免疫鸡后能够完全抵御H7N9 HPAIV的致死性攻击,20μg pCA-SD098剂量可以有效阻断H7N9 LPAIV的感染。攻毒后,所有免疫鸡无发病、无死亡、无排毒,本研究为质粒pCA-SD098作为防控H7N9禽流感的候选DNA疫苗提供了实验依据。  相似文献   

2.
将密码子及表达载体优化的H5亚型禽流感DNA疫苗质粒pCAGGoptiHA5以50μg和10μg剂量单次或加强免疫5周龄海兰褐蛋鸡。单次免疫后3周及加强免疫后2周,用100LD50高致病力禽流感病毒A/Goose/GuangDong/1/96(H5N1)[Gs/GD/1/96(H5N1)]鼻腔途径进行攻击,观察发病与死亡情况,并分别于攻毒后3、5、7d采集喉头及泄殖腔拭子进行病毒分离、滴定检测排毒情况,同时检测免疫后、攻毒前及攻毒后血清HI抗体、AGP抗体的动态变化。结果表明,pCAGGoptiHA5以10μg加强免疫后,可以诱导商品蛋鸡产生较高水平的HI抗体,并可保护免疫蛋鸡不发生高致病性禽流感病毒攻击后的死亡。  相似文献   

3.
为研究双顺反子DNA疫苗对禽流感病毒(AIV)的保护作用,将H5和H7亚型AIV的HA基因克隆到同一表达栽体上,构建了双顺反子HA基因表达质粒pCI—H5HA—H7HA。以此质粒肌注免疫4周龄SPF鸡,首次免疫后3周加强免疫,同时设pCI—H5HA和pCI—H7HA联合免疫组及空白对照组,每周采血用微量血凝抑制法检测HI抗体。加强免疫后3周分别以100LD50的高致病力禽流感病毒(HPAIV)A/Goose/Guangdong/1/96(H5N1)和A/FPv/Rostock/34〈(H7N1)进行致死性攻击。结果显示各免疫组均可刺激鸡体产生H5、H7特异性抗体,pCI—H5HA—H7HA诱导产生的抗体对H5N1和H7N1的攻毒保护分别为50%和10%,而pCI—H5HA和pCI—H7HA联合免疫的攻毒保护均为70%。表明双顺反子质粒可诱导鸡产生较好或一定的保护,但免疫效果不够理想,推测与DNA的摄取及其体内表达有关,可望通过调整DNA疫苗的多种因素提高免疫效果。  相似文献   

4.
试验背景:研制一种疫苗使人类免受H5N1亚型禽流感病毒的感染是一项迫在眉睫的任务。DNA疫苗是传统疫苗的替代品,可以预防新的H5N1亚型禽流感病毒的出现。在本试验中,笔者对用表达H5N1亚型禽流感病毒血凝素蛋白(HA)的质粒DNA进行单独免疫时在感染早期是否可以使小鼠模型抵抗致死攻击进行了评估。试验方法:在对小鼠进行致死攻毒前的第3、5、7天用HA疫苗分别单独免疫1次。小鼠的存活率、肺中病毒的滴度及体重的变化作为评估疫苗保护力的指标。在免疫后的不同天数,摘除小鼠眼球收集血清并通过ELISA和HI试验对特异性抗体进行检测,用以测定HA DNA疫苗介导的体液免疫反应。免疫后分离脾细胞,通过ELISPOT试验测定抗原特异性T细胞反应。试验结果:攻毒试验结果表明,用H5N1亚型禽流感病毒HA DNA疫苗进行单独免疫可以产生针对同型致死病毒量的有效的早期保护。免疫学分析显示,在免疫后的短时间内小鼠体内可以产生具有抗原特异性的抗体及T细胞反应。疫苗的保护能力取决于所注射的DNA的量及免疫后的持续时间。结论:与电穿孔法相结合,用100μg H5N1亚型禽流感病毒HA DNA疫苗对小鼠进行单独免疫能够在同型病毒感染的早期产生保护力。  相似文献   

5.
H5-H7双价禽流感核酸疫苗免疫研究   总被引:2,自引:0,他引:2  
由于禽流感的高度变异性,免疫后不同亚型之间难以得到交叉保护,以致病毒得以逃避宿主免疫系统的监视,多价核酸禽流感疫苗具有可以保护不同亚型病毒攻击的特点。本试验设计并构建了包含禽流感H5HA和H7HA1基因的双价真核表达质粒pV-H5-H7及单独表达H5HA和H7HA1的pV-H5和pV-H7HA1。通过RT-PCR,间接免疫荧光(IFA)等方法验证构建质粒的正确性和其表达蛋白的免疫原性。0,21 d分别免疫6~8周龄的BALB/c小鼠,设立双价疫苗组,单表达免疫组和对照组。免疫后35 d用HPAIV H5N1进行致死性攻击。结果显示免疫组均可刺激机体产生H5特异性抗体,pV-H5-H7诱导产生的抗体对H5N1的攻毒保护率为80%,而pV-H5单表达的攻毒保护率也为80%。表明本实验构建的双价禽流感核酸疫苗的免疫效果与单表达组相当(P>0.05),为多价禽流感核酸疫苗的研制提供了基础。  相似文献   

6.
为研制和更新针对H5亚型禽流感病毒(AIV)流行株的DNA疫苗,本研究将新近分离的H5亚型AIV Clade2.3.2e分支代表株A/Duck/Anhui/S1246/2015 (DK/AH/S1246/15)密码子优化的HA基因定向克隆至载体pCAGGS中构建重组质粒pCA-S1246,将该质粒转染293T细胞。利用间接免疫荧光和western blot检测,结果显示, HA蛋白可以在293T细胞中正确表达。将15μg、 30μg和60μg的p CA-S1246质粒分别免疫3周龄的SPF鸡, 3周以后以相同的剂量加强免疫后1周,检测其HI抗体平均效价分别可达1∶56、 1∶16和1∶37;加强免疫1周后用105EID50的DK/AH/S1246/15进行攻击时,免疫组的保护率为100%。本研究为DNA质粒pCA-S1246作为防控Clade.2.3.2e AIV的候选DNA疫苗株提供了实验依据。  相似文献   

7.
为了测定新城疫-H9N2亚型禽流感嵌合型病毒样颗粒(ND-H9N2 VLPs)作为疫苗候选株的免疫效果,试验将ND-H9N2 VLPs联合铝佐剂制成ND-H9N2 VLPs疫苗,测定ND-H9N2 VLPs疫苗的最小免疫剂量及一次超剂量接种的安全性。选取7日龄非免疫雏鸡30只,随机分为3组,每组10只。第1组为ND-H9N2 VLPs联合佐剂免疫组,以350μL/只的剂量进行皮下注射免疫;第2组为商品疫苗组[鸡新城疫、禽流感(H9亚型)二联灭活疫苗(La Sota株+F株)]依照商品说明书进行免疫;第3组为阴性对照组,以相同方式注射同等剂量的生理盐水;初免两周后,以同等剂量和免疫方式进行加强免疫,加强免疫3周后,所有鸡用新城疫强毒TY-1株和H9N2亚型禽流感病毒SX-1株进行滴鼻、点眼攻毒,每周定时进行鸡翅下静脉采血,分离血清,用血凝抑制试验测定每只鸡的抗体效价,攻毒后连续14 d每天定时观察各组鸡群的临床症状,统计死亡数,计算免疫保护率。结果表明:ND-H9N2 VLPs疫苗的最小免疫剂量为30μg蛋白/只,用此疫苗以5倍剂量进行免疫,免疫鸡未出现新城疫、禽流感临床症状,表明此疫苗安全性良好。ND-H9N2 VLPs联合铝佐剂免疫组与商品疫苗组比,两组鸡在临床症状和存活率上表现一致,在抵抗当前流行毒株的感染时,都能够提供100%保护作用;两组鸡免疫后新城疫和H9亚型禽流感抗体效价都是在第5周达到峰值,之后缓慢下降,但是ND-H9N2 VLPs联合铝佐剂疫苗免疫组鸡的血清抗体效价与商品疫苗比要相对高些。说明本试验研制的ND-H9N2 VLPs作为疫苗候选株具有很大的防控优势。  相似文献   

8.
对H5亚型禽流感DNA疫苗质粒pCAGGoptiHA5的免疫效果进行了研究。pCAGGoptiHA5分别以100和10μg剂量一次或两次免疫3周龄SPF鸡,首次免疫后4周以同样剂量和途径进行第二次免疫,一次免疫后4周、两次免疫后2周分别用100LD50的HPAIV A/Goose/GuangDong/1/96(H5N1)鼻腔途径进行攻击,观察发病与死亡情况,分别于攻毒后第3、5、7天采集喉头及泄殖腔拭子进行病毒分离、滴定检测排毒情况,同时检测免疫后、攻毒前及攻毒后血清HI抗体、NT抗体以及AGP抗体的动态变化。结果,100μg pCAGGoptiHA5一次免疫、100μg pCAGGoptiHA5两次免疫以及10μg pCAGGoptiHA5两次免疫均可对免疫鸡形成100%完全保护(不发病、不致死、不排毒),10μg剂量pCAGGoptiHA5一次免疫可对免疫鸡形成100%的保护(不发病、不致死),结果表明,pCAGGoptiHA5作为疫苗效果良好、成本低廉,有望成为预防H5亚型高致病力禽流感的高效、安全新型基因工程疫苗。  相似文献   

9.
《中国兽医学报》2015,(12):1948-1953
比较鸭源H5N5亚型禽流感病毒(A/Duck/Changchun/01/2010)和鸭源H5N1亚型禽流感病毒(A/Duck/Liaoning/N/2011)对BALB/c鼠的致病性。以106EID50/50μL剂量鼻腔感染6周龄BALB/c鼠,攻毒后3,5,7,10,14 d取小鼠的肺、脑和肝脏,处理后接种10日龄SPF鸡胚做病毒回收试验,取死亡鸡胚的尿囊液进行RT-PCR检测;分别取接种病毒后5 d小鼠的脑、肝脏、肺脏、脾脏、肾脏进行病理组织学检测。结果显示,小鼠接种H5N5和H5N1亚型禽流感病毒后,均无明显的临床症状,肝脏中分别于接种后3,5 d分离到病毒,肺脏中于接种后5 d分离到病毒,脾脏、肾脏和粪便中均未分离到病毒。病理组织学检测发现,病毒对小鼠的脏器组织产生了不同程度的病理损伤,以肺脏、脑和肝脏较为明显,且H5N1亚型禽流感病毒引起小鼠脑和肝脏的病理损伤比H5N5亚型更严重。这表明2株鸭源禽流感病毒对小鼠均有一定的致病性,且H5N1亚型强于H5N5亚型。  相似文献   

10.
1畜禽免疫程序1.1禽流感免疫程序1.1.1常规免疫种鸡、蛋鸡14日龄时,用重组禽流感灭活疫苗(H5N1亚型,Re-1株)或禽流感灭活疫苗(H5亚型,N28株)进行初免,间隔21日后再进行一次加强免疫,以后每6个月进行1次加强免疫;也可用禽流感重组鸡痘病毒载体活疫苗(H5亚型)初免,间隔21d后再用重组禽流感灭活疫苗(H5N1亚型,Re-1株)或禽流感灭活疫苗(H5亚型,N28株)加强免疫1次,以后每6个月再用重组禽流感灭活疫苗(H5N1亚型,Re-1株)或禽流感灭活疫苗(H5亚型,N28株)进行1次加强免疫。1.1.2商品代肉鸡10~14日龄时,用禽流感重组鸡痘病毒载体活疫苗(H5亚型…  相似文献   

11.
In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used.  相似文献   

12.
Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.  相似文献   

13.
Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-015-0174-3) contains supplementary material, which is available to authorized users.  相似文献   

14.
To analyze the contribution of neuraminidase (NA) toward protection against avian influenza virus (AIV) infection, three different recombinant Newcastle disease viruses (NDVs) expressing hemagglutinin (HA) or NA, or both, of highly pathogenic avian influenza virus (HPAIV) were generated. The lentogenic NDV Clone 30 was used as backbone for the insertion of HA of HPAIV strain A/chicken/Vietnam/P41/05 (H5N1) and NA of HPAIV strain A/duck/Vietnam/TG24-01/05 (H5N1). The HA was inserted between the genes encoding NDV phosphoprotein (P) and matrixprotein (M), and the NA was inserted between the fusion (F) and hemagglutinin-neuraminidase protein (HN) genes, resulting in NDVH5VmPMN1FHN. Two additional recombinants were constructed carrying the HA gene between the NDV P and M genes (NDVH5VmPM) or the NA between F and HN (NDVN1FHN). All recombinants replicated well and stably expressed the HA gene, the NA gene, or both. Chickens immunized with NDVH5VmPMN1FHN or NDVH5VmPM were protected against two different HPAIV H5N1 and also against HPAIV H5N2. In contrast, immunization of chickens with NDVN1FHN induced NDV- and AIV N1-specific antibodies but did not protect the animals against a lethal dose of HPAIV H5N1. Furthermore, expression of AIV N1, in addition to AIV H5 by NDV, did not increase protection against HPAIV H5N1.  相似文献   

15.
Vaccines against mildly pathogenic avian influenza (AI) have been used in turkeys within the United States as part of a comprehensive control strategy. Recently, AI vaccines have been used in control programs against highly pathogenic (HP) AI of chickens in Pakistan and Mexico. A recombinant fowl pox-AI hemagglutinin subtype (H) 5 gene insert vaccine has been shown to protect specific-pathogen-free chickens from HP H5 AI virus (AIV) challenge and has been licensed by the USDA for emergency use. The ability of the recombinant fowl pox vaccine to protect chickens preimmunized against fowl pox is unknown. In the current study, broiler breeders (BB) and white leghorn (WL) pullets vaccinated with a control fowl poxvirus vaccine (FP-C) and/or a recombinant fowl poxvirus vaccine containing an H5 hemagglutinin gene insert (FP-HA) were challenged with a HP H5N2 AIV isolated from chickens in Mexico. When used alone, the FP-HA vaccine protected BB and WL chickens from lethal challenge, but when given as a secondary vaccine after a primary FP-C immunization, protection against a HP AIV challenge was inconsistent. Both vaccines protected against virulent fowl pox challenge. This lack of consistent protection against HPAI may limit use to chickens without previous fowl pox vaccinations. In addition, prior exposure to field fowl poxvirus could be expected to limit protection induced by this vaccine.  相似文献   

16.
禽痘病毒感染对禽流感重组禽痘病毒疫苗免疫效力的影响   总被引:1,自引:0,他引:1  
表达禽流感病毒 (AIV)HA和NA基因的重组禽痘病毒rFPV_HA_NA能够诱导鸡体产生 10 0 %抵抗高致病性禽流感病毒 (HPAIV)H5N1的攻击。而当鸡群已进行禽痘疫苗免疫或者感染了禽痘病毒的情况下 ,此重组疫苗的免疫效力如何 ?首先用禽痘病毒S_FPV_0 17人工感染SPF试验鸡 ,既而在感染后的不同间隔时间接种重组疫苗 ,免疫后检测鸡群的HI抗体水平 ,同时用 10 0LD50 的HPAIVH5N1进行攻击。结果重组疫苗免疫与禽痘病毒人工感染时间间隔在 4周 (或以上 )时 ,预先感染禽痘病毒对重组疫苗的免疫效力不构成影响 ,对禽流感的保护力为 10 0 % ,而间隔时间在 1、2、3周时 ,重组疫苗的免疫保护效力则受到不同程度的影响。  相似文献   

17.
研究新型重组H5N1亚型禽流感灭活疫苗对种鸡和肉鸡的免疫原性,并对雏鸡母源抗体和免疫后的抗体进行动态观察,根据试验结果推荐该疫苗对鸡的免疫程序。用HI方法检测种鸡、肉鸡的母源抗体和免疫抗体,根据母源抗体的衰减和免疫抗体的消长规律确定首免和再免日龄。结果表明种鸡的母源抗体约能维持10 d多;0.3 mL/羽首免后10 d HI抗体就可达到6.40 log2,3-5周达到高峰期,至免疫17周后(19周龄)HI抗体水平仍然维持在4.88 log2;19周龄时0.5 mL/羽进行二免,有效抗体能维持约20周;280日龄0.5 mL/羽三免后抗体水平均一,下降缓慢,至种鸡淘汰时(三免后29周)抗体水平仍能维持在5.32 log2。肉鸡母源抗体约能维持7d,10日龄时0.3 mL/羽免疫,有效抗体能维持到上市。新型重组H5N1亚型禽流感灭活疫苗对鸡的免疫原性确实。  相似文献   

18.
A recombinant fowlpox vaccine virus containing the H5 hemagglutinin gene of avian influenza virus was administered to susceptible chickens via wing-web puncture, eye drop, instillation into the nares, and drinking water. Even though there was a negligible hemagglutination-inhibition (HI) serologic response, all 10 chickens vaccinated by wing-web puncture remained without obvious signs of disease and survived challenge with a highly pathogenic strain of H5N2 avian influenza virus. All unvaccinated chickens and those vaccinated by nasal and drinking-water routes died following challenge. Eight of 10 chickens vaccinated with the recombinant by eyedrop died. All vaccinates were negative on the agar gel precipitin (AGP) test, and only one chicken had a positive HI titer before challenge. All chickens that survived challenge had high levels of HI antibody and were positive on the AGP test, indicating that they were infected by the challenge virus.  相似文献   

19.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号