首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OBJECTIVE: To estimate the probability for exceeding a threshold concentration of furosemide commonly used for regulatory purposes after IV administration of furosemide in horses. ANIMALS: 12 mature healthy horses (6 Thoroughbreds and 6 Quarter Horses). PROCEDURE: Venous blood was collected from each horse prior to and 0.25, 0.5, 0.75, 1, 2, 3, 4, 4.5, 5, and 6 hours after administration of 250 or 500 mg of furosemide. Concentrations of furosemide were determined, using an ELISA. Concentration of furosemide was modeled as a function of time, accounting for inter- and intrahorse variabilities. On the basis of pharmacokinetic data, the probability for exceeding a concentration of 100 ng/ml as a function of time was determined, using a semiparametric smooth functional averaging method. A bootstrap approach was used to assess inherent variation in this estimated probability. RESULTS: The estimated probability of exceeding the threshold of 100 ng of furosemide/ml ranged from 11.6% at 4 hours to 2.2% at 5.5 hours after IV administration of 250 mg of furosemide/horse and 34.2% at 4 hours to 12.3% at 5.5 hours after IV administration of 500 mg of furosemide/horse. The probability of a horse being falsely identified in violation of regulatory concentrations was inversely associated with time and positively associated with dose. CONCLUSIONS AND CLINICAL RELEVANCE: Interhorse variability with respect to pharmacokinetics of furosemide will result in misclassification of some horses as being in violation of regulatory concentrations.  相似文献   

2.
Furosemide is the most common diuretic drug used in horses. Furosemide is routinely administered as IV or IM bolus doses 3-4 times a day. Administration PO is often suggested as an alternative, even though documentation of absorption and efficacy in horses is lacking. This study was carried out in a randomized, crossover design and compared 8-hour urine volume among control horses that received placebo, horses that received furosemide at 1 mg/kg PO, and horses that received furosemide at 1 mg/kg IV. Blood samples for analysis of plasma furosemide concentrations, PCV, and total solids were obtained at specific time points from treated horses. Furosemide concentrations were determined by reversed-phase high-performance liquid chromatography with fluorescent detection. Systemic availability of furosemide PO was poor, erratic, and variable among horses. Median systemic bioavailability was 5.4% (25th percentile, 75th percentile: 3.5, 9.6). Horses that received furosemide IV produced 7.4 L (7.1, 7.7) of urine over the 8-hour period. The maximum plasma concentration of 0.03 microg/mL after administration PO was not sufficient to increase urine volume compared with control horses (1.2 L [1.0, 1.4] PO versus 1.2 L [1.0, 1.4] control). There was a mild decrease in urine specific gravity within 1-2 hours after administration of furosemide PO, and urine specific gravity was significantly lower in horses treated with furosemide PO compared with control horses at the 2-hour time point. Systemic availability of furosemide PO was poor and variable. Furosemide at 1 mg/kg PO did not induce diuresis in horses.  相似文献   

3.
Furosemide is a potent loop diuretic used for the prevention of exercise-induced pulmonary hemorrhage in horses. This drug may interfere with the detection of other substances by reducing urinary concentrations, so its use is strictly regulated. The regulation of furosemide in many racing jurisdictions is based on paired limits of urinary SG (<1.010) and serum furosemide concentrations (>100 ng/ml). To validate this regulatory mechanism, a liquid chromatography/mass spectrometry/mass spectrometry method employing a solid-phase extraction procedure and furosemide-d5 as an internal standard was developed. The method was used to determine the pharmacokinetic parameters of furosemide in equine serum samples and its effects on urinary SG after IV administration (250 mg) to 10 horses. Pharmacokinetic analysis showed that serum concentrations of furosemide were well described by a two-compartmental open model. Based on results in this study, it is very unlikely for horses to have serum furosemide concentrations greater than 100 ng/ml or urine SG less than 1.010 at 4 hours after administration (250 mg IV). However, it should be remembered that urine SG is a highly variable measurement in horses, and even without furosemide administration, some horses might naturally have urine SG values less than 1.010.  相似文献   

4.
Monitoring furosemide in racehorses participating in an EIPH program   总被引:1,自引:0,他引:1  
Analytical procedures were developed to monitor furosemide concentrations in post-race serum and urine samples obtained from horses participating in an exercise-induced pulmonary haemorrhage (EIPH) program. High performance liquid chromatography with ultraviolet light detection proved a reliable, sensitive method for measuring urinary furosemide concentrations up to 12 h after administration of either 150 or 250 mg of the drug to race horses. However, this method was unreliable for determination of serum furosemide concentration. High performance liquid chromatography with fluorescence detection proved a reliable, sensitive method for measuring serum furosemide concentrations in horses administered 250 mg of the diuretic, permitting detection approximately 5–10 ng/ml 6 h after treatment. This method was applied field conditions where furosemide was administered to horses (between 150 and 250 mg intravenously) 4 h prior to the race. Analytical results assisted establishing a threshold concentration of 85 ng/ml for serum furosemide. was found that serum furosemide concentrations are a valid measure of compliance with furosemide administration in the EIPH program.  相似文献   

5.
OBJECTIVE: To investigate the diuretic effects, tolerability, and adverse effects of furosemide and torsemide after short- and long-term administration in healthy dogs. ANIMALS: 8 mixed-breed dogs. PROCEDURES: In a crossover study, furosemide (2 mg/kg), torsemide (0.2 mg/kg), or placebo (bifidobacterium [1 mg/kg]) was administered orally to each dog every 12 hours for 14 days. Blood and urine samples were collected before the study (baseline data) and at intervals on the 1st (short-term administration) and 14th day (long-term administration) of treatment for assessment of urine volume and specific gravity and selected clinicopathologic variables including BUN, creatinine, and aldosterone concentrations, and creatinine clearance. RESULTS: Compared with the baseline value, short-term administration of furosemide or torsemide immediately increased urine volume significantly; after long-term administration of either drug, urine specific gravity decreased significantly. Compared with the effect of placebo, the 24-hour urine volume was significantly increased after short-term administra-tion of furosemide or torsemide. In addition, it was significantly increased after long-term administration of torsemide, compared with that of short-term administration. Long-term administration of furosemide or torsemide increased the BUN and plasma creatinine con-centrations, compared with the baseline value. Compared with the baseline value, plasma aldosterone concentration was significantly increased after long-term administration of either drug and was significantly higher after torsemide treatment than after furosemide treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, diuretic resistance developed after 14 days of furosemide, but not torsemide, administration; however, both loop diuretics were associated with increased BUN and plasma creatinine concentrations, compared with values before treatment.  相似文献   

6.
Four hours prior to exercise on a high-speed treadmill, 4 dosages of furosemide (0.25, 0.50, 1.0, and 2.0 mg/kg of body weight) and a control treatment (10 ml of 0.9% NaCl) were administered IV to 6 horses. Carotid arterial pressure (CAP), pulmonary arterial pressure (PAP), and heart rate were not different in resting horses before and 4 hours after furosemide administration. Furosemide at dosage of 2 mg/kg reduced resting right atrial pressure (RAP) 4 hours after furosemide injection. During exercise, increases in treadmill speed were associated with increases in RAP, CAP, PAP, and heart rate. Furosemide (0.25 to 2 mg/kg), administered 4 hours before exercise, reduced RAP and PAP during exercise in dose-dependent manner, but did not influence heart rate. Mean CAP was reduced by the 2-mg/kg furosemide dosage during exercise at 9 and 11 m/s, but not at 13 m/s. During recovery, only RAP was decreased by furosemide administration. Plasma lactate concentration was not significantly influenced by furosemide administration. Furosemide did not influence PCV or hemoglobin concentration at rest prior to exercise, but did increase both variables in dose-dependent manner during exercise and recovery. However, the magnitude of the changes in PCV and hemoglobin concentration were small in comparison with changes in RAP and PAP, and indicate that furosemide has other properties in addition to its diuretic activities. Furosemide may mediate some of its cardiopulmonary effects by vasodilatory activities that directly lower pulmonary arterial pressure, but also increase venous capacitance, thereby reducing venous return to the atria and cardiac filling.  相似文献   

7.
Postrace urine samples from thoroughbred horses were examined to compare osmolality and specific gravity between horses treated with furosemide and those not treated. Samples were assigned to groups in relation to reported medication (furosemide) status, race finish position, and distance of race. Urine osmolality was significantly (P <.05) lower in samples from horses treated with furosemide when compared with untreated horses. Specific gravity determinations are less precise at measuring urine osmolality at lower levels (1.01 g/ml or less). The measurement of osmolality is a superior method for determining the urine solute concentration and facilitating the regulation of furosemide.  相似文献   

8.
Alterations in electrolyte and acid-base balance were studied in 6 horses for 8 hours after furosemide administration (1 mg/kg of body weight, IM), and the results were compared with those for 5 healthy untreated horses (controls) kept under identical environmental conditions. In the treated group, decreases in plasma potassium, chloride, and calcium concentrations and increases in total plasma protein content persisted for the 8-hour observation period, whereas there was no change in plasma sodium concentration, osmolality, or packed cell volume. Plasma bicarbonate concentration and PCO2 remained high throughout the study, during which time venous blood pH was modestly increased only at the 6-hour sampling time. Furosemide treatment resulted in decreases in urine pH, specific gravity, osmolality, and potassium and calcium concentrations and increases in urine volume and total urine sodium, chloride, and calcium excretion. Body weight decreased 19.2 +/- 5.2 kg (mean +/- SD) in treated horses (4 +/- 1% of body weight), compared with a weight loss of 8 +/- 2.1 kg in untreated horses (1.5 +/- 0.4% of body weight) during the 8-hour experimental period. The increased fluid losses induced by the diuretic did not cause any obvious clinical signs in the horses. Pulse pressure, skin turgor, capillary refill time, and jugular distensibility remained unchanged throughout the experimental period.  相似文献   

9.
The effects of furosemide and pentoxifylline on blood flow properties in horses were investigated. Hematologic and rheologic changes were examined in 4 horses before and 3 minutes after administration of epinephrine (1 mg, IV). The next day, hemorheologic changes were determined before and 3 hours after administration of furosemide (1 mg/kg of body weight, IM), and after administration of epinephrine at the sampling at 3 hours. Hematologic and rheologic changes were evaluated weekly in 3 horses given pentoxifylline (8.5 mg/kg, q 12 h, PO) for 28 days. In addition, hemorheologic responses to epinephrine were determined on days 0, 14, and 28 of pentoxifylline treatment. Neutrophil filtration studies were also performed 2 hours after IV administration of pentoxifylline (8.5 mg/kg). Postepinephrine values for PCV, RBC and WBC counts, and blood viscosity were greater than preepinephrine values. Erythrocyte sedimentation rates decreased after epinephrine, whereas RBC filterability did not change. Treatment with furosemide was associated with increases in mean RBC hemoglobin concentration and blood viscosity. Filterability of RBC did not change. Treatment with pentoxifyllie resulted in an increase in RBC filterability and erythrocyte sedimentation rate and a decrease in PCV; however, mean values for hematocrit and RBC count did not change. Treatment with pentoxifylline did not result in a change in resting blood viscosity, but markedly reduced the postepinephrine increase in blood viscosity. Neither IV nor orally administered pentoxifylline had an effect on neutrophil filtration. It was concluded that pentoxifylline has beneficial effects on RBC filterability and postepinephrine changes in blood viscosity, which may contribute to improvements of microcirculatory blood flow. In addition, furosemide may exacerbate exercise-associated hyperviscosity in horses.  相似文献   

10.
Nine Standardbred horses of similar athletic fitness (six mares, three geldings), ranging from 4 to 11 years of age, were used to determine the effects of 0, 250, or 500 mg intravenously administered furosemide on plasma tCO2 changes over time. All horses were either currently racing or in advanced stages of race training before entering a qualifying race. Horses were randomly allotted to one of the three treatment levels of furosemide during 3 consecutive weeks. Jugular venous samples were obtained from horses at rest in box stalls before and hourly for 6 hours after administration of furosemide. Body weights of horses ranged from 356 to 456 kg, and the mean was 417 kg. Thus, the dose of furosemide received by each horse ranged from 0.55 to 0.70 mg/kg body weight for the 250-mg injections and from 1.1 to 1.4 mg/kg body weight for the 500-mg injections. Furosemide caused metabolic alkalosis in the horses. Least square means (±SEM) were determined and horses had adjusted plasma tCO2 of 32.2, 33.9, and 34.7 ± 0.41 for the 0-, 5-, and 10-mL doses of furosemide, respectively. The type 3 tests of hypotheses found that there was a difference (P < .0001) across time, a difference (P = .0016) according to furosemide dose, and a difference (P < .0001) according to treatment × hour. There was no difference (P > .05) according to week or treatment × week. These data suggest that either 250 or 500 mg furosemide given to Standardbred race horses induces statistically similar metabolic alkalosis.  相似文献   

11.
The distribution of specific gravity values for 2,599 urine samples collected from racing Thoroughbred horses that were known to have received furosemide prior to racing was compared with that for 1,669 urine samples from racing Thoroughbred horses that reportedly had not received furosemide. Values of specific gravity for furosemide-treated horses were significantly lower (P < 0.001) than those for horses that had not received furosemide, and the proportion of horses with urine specific gravity either <1.010 or <1.012 was significantly greater (P < 0.001) among the furosemide-treated horses. These data indicate that evaluation of urine specific gravity would be a useful component of drug testing programs for regulation of furosemide use.  相似文献   

12.
Continuous rate infusion (CRI) of furosemide in humans is considered superior to intermittent administration (IA). This study examined whether furosemide CRI, compared with IA, would increase diuretic efficacy with decreased fluid and electrolyte fluctuations and activation of the renin-angiotensin-aldosterone system (RAAS) in the horse. Five mares were used in a crossover-design study. During a 24-hour period, each horse received a total of 3 mg/kg furosemide by either CRI (0.12 mg/kg/h preceded by a loading dose of 0.12 mg/kg IV) or IA (1 mg/kg IV q8h). There was not a statistically significant difference in urine volume over 24 hours between methods; however, urine volume was significantly greater after CRI compared with IA during the first 8 hours ([median 25th percentile, 75th percentile]: 9.6 L [8.9, 14.4] for CRI versus 5.9 L [5.3, 6.0] for IA). CRI produced a more uniform urine flow, decreased fluctuations in plasma volume, and suppressed renal concentrating ability throughout the infusion period. Potassium, Ca, and Cl excretion was greater during CRI than IA (1,133 mmol [1.110, 1,229] versus 764 mmol [709, 904], 102.7 mmol [96.0, 117.2] versus 73.3 mmol [65.0, 73.5], and 1,776 mmol [1,657, 2.378] versus 1,596 mmol [1,457, 1,767], respectively). Elimination half-lives of furosemide were 1.35 and 0.47 hours for CRI and IA, respectively. The area under the excretion rate curve was 1,285.7 and 184.2 mL x mg/mL for CRI and IA, respectively. Furosemide CRI (0.12 mg/kg/h) for 8 hours, preceded by a loading dose (0.12 mg/kg), is recommended when profound diuresis is needed acutely in horses.  相似文献   

13.
The pharmacokinetics of theophylline were determined in 6 healthy horses after a single IV administration of 12 mg of aminophylline/kg of body weight (equivalent to 9.44 mg of theophylline/kg). Serum theophylline was measured after the IV dose at 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 15 hours. Serum concentration plotted against time on semilogarithmic coordinates, indicated that theophylline in 5 horses was best described by a 2-compartment open model and in 1 horse by a 1-compartment open model. The following mean pharmacokinetic values were determined; elimination half-life = 11.9 hours, distribution half-life = 0.495 hours, apparent specific volume of distribution = 0.885 +/- 0.075 L/kg, apparent specific volume of central compartment = 0.080 L/kg, and clearance = 51.7 +/- 11.2 ml/kg/hr. Three horses with reversible chronic obstructive pulmonary disease were serially given 1, 3, 6, 9, 12, and 15 mg of aminophylline/kg in single IV doses (equivalent to 0.8, 2.4, 4.7, 7.1, 9.44, and 11.8 mg of theophylline/kg, respectively). The horses were exposed to a dusty barn until they developed clinical signs of respiratory distress and were then given the aminophylline. Effects of increasing doses on different days were correlated with clinical signs, blood pH, and blood gases. The 3 horses had a decrease in the severity of clinical signs after the 9, 12, or 15 mg doses of aminophylline/kg. The horses at 0.5 hour after dosing had a significant decrease in PaCO2 (43.6 +/- 5.5 to 39.4 +/- 6.7 mm of Hg, P less than 0.001) and a significant increase in blood pH (7.38 +/- 0.017 to 7.41 +/- 0.023, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Several studies in human subjects have demonstrated greater diuresis with constant rate infusion (CRI) furosemide than intermittent bolus (IB) furosemide. This study was conducted to compare the diuretic efficacy of the same total dose of IB furosemide and CRI furosemide in 6 healthy, adult Greyhound dogs in a randomized crossover design with a 2-week washout period between treatments. For IB administration, dogs received 3 mg/kg at 0 and 4 hours. For CRI administration, dogs received a 0.66 mg/kg loading dose followed by 0.66 mg/kg/h over 8 hours. The same volume of fluid was administered for both methods. Urine output was quantified hourly. Urine electrolyte concentrations, urine specific gravity (USG), packed cell volume (PCV), total protein (TP), serum electrolyte concentrations, total carbon dioxide (TCO2), serum creatinine (sCr), and blood urea nitrogen (BUN) were determined every 2 hours. Urine production and water intake were greater (P < or = 0.05) for CRI than IB. Urine sodium and calcium losses were greater (P < 0.05) and urine potassium loss was less (P = 0.03) for CRI than IB, but there was no evidence of a difference between methods for urine magnesium and chloride losses. Serum chloride concentration was less (P < 0.001), sCr concentration greater (P = 0.04). TP greater (P = 0.01), and PCV greater (P = 0.003) for CRI than IB. No differences in USG, TCO2, BUN, or serum potassium, sodium, and magnesium concentrations were detected between methods. The same total dose of CRI furosemide resulted in more diuresis, natriuresis, and calciuresis and less kaliuresis than IB furosemide in these normal Greyhound dogs over 8 hours, suggesting that furosemide is a more effective diuretic when administered by CRI than by IB.  相似文献   

15.
OBJECTIVES: To determine whether i.v. administration of furosemide (250 mg) to horses before maximal exercise affected maximal oxygen consumption (VO2max), breathing mechanics, or gas exchange during exercise. ANIMALS: 7 healthy, well-conditioned Thoroughbred horses. PROCEDURES: 5 horses initially performed an incremental treadmill exercise test to determine VO2max 4 hours after i.v. administration of furosemide (250 mg i.v.) or placebo (saline [0.9% NaCl] solution). Time to fatigue and distance run were recorded. All 7 horses were then used to determine the effects of furosemide on gas exchange and breathing mechanics at 40, 60, 80, and 100% of VO2max. Horses were weighed immediately before exercise. RESULTS: Furosemide treatment significantly increased mass-specific VO2max (5.3%), but absolute VO2max was not significantly altered. In the 2 parts of the study, body weights were 2.9 and 2.5% higher when horses were given placebo than when they were given furosemide. Time and distance run at speeds > or = 11.0 m/s were significantly greater following furosemide administration. Furosemide treatment had no effect on breathing mechanics or gas exchange. CONCLUSIONS AND CLINICAL RELEVANCE: Previous studies have suggested that prerace administration of furosemide may have a positive effect on performance. Results of this study indicate that this may be attributable, in part, to an increase in mass-specific VO2max but not to improvements in breathing mechanics or gas exchange. Most of the increase in mass-specific VO2max appeared to be attributable to weight loss associated with diuresis induced by furosemide.  相似文献   

16.
Background: The effects of furosemide on left atrial pressure (LAP) in dogs with mitral regurgitation (MR) have not been documented in a quantitative manner and between different routes of administration. Objective: To document LAP and echocardiographic parameters in MR dogs administered furosemide IV or PO, in order to document changes in LAP after furosemide treatment. Animals: Five healthy Beagle dogs (3 males and 2 females; aged 2 years) were used. Methods: Experimental, cross‐over, and interventional study. LAP was measured before the administration of furosemide, and 30 minutes, 1, 1.5, 2, 3, 4, 5, 6, 8, 12, and 24 hours after administration. Furosemide 1, 2, or 4 mg/kg IV, PO or placebo was administered. Results: LAP was significantly decreased with all administrations of furosemide but not after placebo (P < .05, respectively). The max reduction was observed 1 hour (1 mg/kg IV, 15.04 ± 7.02 mmHg), 3 hours (2, 4 mg/kg IV, 13.28 ± 8.01, 9.23 ± 4.92 mmHg), 4 hours (1 mg/kg PO, 14.68 ± 11.51 mmHg), and 5 hours (2, 4 mg/kg PO, 13.19 ± 10.52, 10.70 ± 7.69 mmHg). E wave and E/Ea were significantly decreased corresponding to the reduction of LAP after administration of 2 and 4 mg/kg (P < .05, respectively). Conclusions and Clinical Importance: LAP was decreased in proportion to the dosage of furosemide, which did not significantly differ between IV and PO of the same dosages. E wave and E/Ea might be useful for the treatment evaluation of furosemide.  相似文献   

17.
Clenbuterol, a beta2 agonist/antagonist, is the only bronchodilator approved by the US Food and Drug Administration for use in horses. The Association of Racing Commissioners International classifies clenbuterol as a class 3 agent, and, as such, its identification in post-race samples may lead to sanctions. Anecdotal reports suggest that clenbuterol may have been administered by intratracheal (IT) injection to obtain beneficial effects and avoid post-race detection. The objectives of this study were (1) to measure the pharmacological efficacy of IT dose of clenbuterol and (2) to determine the analytical findings in urine in the presence and absence of furosemide. When administered intratracheally (90 microg/horse) to horses suffering from chronic obstructive pulmonary disease (COPD), clenbuterol had effects that were not significantly different from those of saline. In parallel experiments using a behavior chamber, no significant effects of IT clenbuterol on heart rate or spontaneous locomotor activity were observed. Clenbuterol concentrations in the urine were also measured after IT dose in the presence and absence of furosemide. Four horses were administered i.v. furosemide (5 mg/kg), and four horses were administered saline (5 mL). Two hours later, all horses were administrated clenbuterol (IT, 90 microg), and the furosemide-treated horses received a second dose of furosemide (2.5 mg/kg, i.v.). Three hours after clenbuterol dose (1 h after hypothetical 'post-time'), the mean specific gravity of urine samples from furosemide-treated horses was 1.024, well above the 1.010 concentration at which furosemide is considered to interfere with drug detection. There was no interference by furosemide with 'enhanced' ELISA screening of clenbuterol equivalents in extracted and concentrated samples. Similarly, furosemide had no effect on mass spectral identification or quantification of clenbuterol in these samples. These results suggest that the IT dose of clenbuterol (90 microg) is, in pharmacological terms, indistinguishable from the dose of saline, and that, using extracted samples, clenbuterol dose is readily detectable at 3 h after dosing. Furthermore, concomitant dose of furosemide does not interfere with detection or confirmation of clenbuterol.  相似文献   

18.
A study of the effects of intravenous administration of either 150 mg or 250 mg of furosemide to standardbred mares pre-treated with other drugs was undertaken to determine whether a unique pattern of drug elimination into urine and from plasma for each compound occurred. Furosemide significantly reduced the plasma concentrations of codeine compared to control 2-6 h after furosemide administration. In contrast, the plasma concentrations of theophylline, phenylbutazone, pentazocine, guaifenesin and flunixin were not markedly altered by furosemide. In the case of acepromazine, clenbuterol and fentanyl, the data generated were insufficient to state with certainty whether or not furosemide affected the plasma concentrations of these three drugs. A significant reduction was noted in the urinary concentrations of guaifenesin, acepromazine, clenbuterol, phenylbutazone, flunixin, fentanyl and pentazocine within 1-4 h of furosemide administration. The urinary concentrations of theophylline remained reduced as long as 8 h after furosemide injection. Furosemide administration to horses pre-treated with codeine resulted in depression of urinary morphine concentrations 2-4 h and 9-12 h after furosemide injection. A lower furosemide dose (150 mg) produced changes in drug urinary excretion and plasma elimination equivalent to the higher dose (250 mg). It is evident that furosemide affects the urinary and plasma concentrations of other co-administered drugs but not in a predictable fashion, which limits the extrapolation of these results to as yet untested drugs.  相似文献   

19.
OBJECTIVE: To determine the clinical effects and pharmacokinetics of amiodarone after single doses of 5 mg/kg administered orally or intravenously. ANIMALS: 6 healthy adult horses. PROCEDURE: In a cross over study, clinical signs and electrocardiographic variables were monitored and plasma and urine samples were collected. A liquid chromatography-mass spectrometry method was used to determine the percentage of protein binding and to measure plasma and urine concentrations of amiodarone and the active metabolite desethylamiodarone. RESULTS: No adverse clinical signs were observed. After IV administration, median terminal elimination half-lives of amiodarone and desethylamiodarone were 51.1 and 75.3 hours, respectively. Clearance was 0.35 L/kg x h, and the apparent volume of distribution for amiodarone was 31.1 L/kg. The peak plasma desethylamiodarone concentration of 0.08 microg/mL was attained 2.7 hours after IV administration. Neither parent drug nor metabolite was detected in urine, and protein binding of amiodarone was 96%. After oral administration of amiodarone, absorption of amiodarone was slow and variable; bioavailability ranged from 6.0% to 33.7%. The peak plasma amiodarone concentration of 0.14 microg/mL was attained 7.0 hours after oral administration and the peak plasma desethylamiodarone concentration of 0.03 microg/mL was attained 8.0 hours after administration. Median elimination half-lives of amiodarone and desethylamiodarone were 24.1 and 58.6 hours, respectively. CONCLUSION AND CLINICAL RELEVANCE: Results indicate that the pharmacokinetic distribution of amiodarone is multicompartmental. This information is useful for determining treatment regimens for horses with arrythmias. Amiodarone has low bioavailability after oral administration, does not undergo renal excretion, and is highly protein-bound in horses.  相似文献   

20.
Echinocytes have been incriminated in the pathogenesis of exertional diseases in horses. To evaluate the hypothesis that echinocytes are dehydrated erythrocytes, we decreased blood sodium and potassium concentrations in 4 horses by administering furosemide (1.0 mg/kg of body weight, q 12 h) for 2 days and we monitored CBC, serum and erythrocyte sodium and potassium concentrations, and echinocyte numbers. Serum sodium concentration decreased progressively over the 48 hours of furosemide administration, then returned to near baseline concentration at 168 hours. A statistically significant decrease (P < 0.05) in serum potassium concentration was observed at 24, 48, and 72 hours after initial furosemide administration, and remained less than the baseline value at the end of the study. Mean erythrocyte potassium concentration decreased rapidly and remained low at the end of the study. Minimal changes were observed in erythrocyte sodium concentration during the first 72 hours after furosemide administration, but the value was significantly (P < 0.05) increased at 168 hours. Type-I and type-II echinocyte numbers increased by 4 hours after furosemide administration and persisted throughout the study. Type-III echinocytes were not seen in baseline samples, but numbers increased only modestly after furosemide administration. Administration of epinephrine to well-hydrated horses increased echinocyte numbers only minimally, indicating that splenic contraction was not the likely cause for the furosemide-associated increase. To determine whether the decrease in erythrocyte potassium concentration and increase in sodium concentration was caused by furosemide acting directly on the erythrocyte membrane, we quantified erythrocyte potassium and sodium concentrations before and after incubation with furosemide in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号