首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 593 毫秒
1.
基因芯片方法检测6种动物源性人兽共患病病原   总被引:1,自引:0,他引:1  
为了建立可同时检测H5亚型禽流感病毒、狂犬病病毒、猪链球菌2型、炭疽芽孢杆菌、沙门氏菌、大肠杆菌O157的基因芯片检测方法,本实验根据GenBank中上述6种病原的基因序列,设计并合成了特异性的引物和探针.采用点样法制备杂交芯片,将上述病原扩增产物混合后与芯片杂交.杂交结果显示,针对本试验中6种人兽共患传染病所设计的寡核苷酸探针可特异性识别靶基因,与其他常见病原体之间没有交叉反应.检测的灵敏度在1.38×10-5pg/μL~151 pg/μL之间.将建立的基因芯片检测方法对临床样品进行检测,结果与荧光PCR方法一致.  相似文献   

2.
《中国兽医学报》2016,(9):1469-1475
对猪瘟病毒(CSFV)、猪繁殖与呼吸障碍综合征病毒(PRRSV)和猪流行性乙型脑炎病毒(JEV)联合共检基因芯片的初步应用进行了研究。选用夹缝针,BaiOR点样缓冲液,确定靶基因质量浓度为200mg/L,各样点中心间距300μm,样点直径100μm,在相对湿度为50%~60%、8~30℃条件下用晶芯?SmartArrayerTM48点样仪在氨基化基片上接触式点样,成功制备了CSFV-PRRSV-JEV检测基因芯片。将标记后的探针基因与PRRSV-CSFV-JEV基因芯片经预杂交、杂交、洗涤干燥后,用晶芯?LuxScanTM10K微阵列芯片扫描仪扫描观察结果。结果表明:制备的芯片特异性强,检测灵敏度可达0.295μg/L,4℃条件下可保存120d;用制备的芯片对临床67份疑似繁殖障碍性疾病的病料进行检测,与RT-PCR检测结果符合率均在94%以上,为猪繁殖障碍性疾病的检测提供了理想的检测方法。  相似文献   

3.
猪传染性胃肠炎病毒检测基因芯片的构建   总被引:6,自引:0,他引:6  
采用PCR扩增制备TGEV的靶基因并进行纯化,对基因芯片的最佳靶基因点样质量浓度、探针质量浓度、杂交温度、杂交时间进行筛选,选择构建检测芯片的最适靶基因,进行基因芯片探针最佳标记方法试验.结果表明,质粒PCR扩增和采用异丙醇沉淀纯化的靶基因质量好,基因芯片最佳靶基因点样质量浓度为200mg/L,最佳探针质量浓度为3 000 μg/L,预杂交时间为1 h,杂交时间为3~6 h,杂交温度为48℃,以S、S3、sM、M、N、ORF7、POL等7个靶基因为构建TGEV检测芯片的最适靶基因,确定了多重PCR扩增标记TGEV探钟的最佳体系,Cy3-dCTP标记浓度为2.5 μmol/L,构建的TGEV检测芯片与标记的混合探针杂交效果好.  相似文献   

4.
猪瘟病毒和猪细小病毒检测基因芯片的构建   总被引:3,自引:0,他引:3  
本试验克隆猪瘟病毒(Classical swine fever virus,CSFV)和猪细小病毒(Porcine parvovirus,PV)各自病毒基因保守序列,提取质粒中的模板、扩增纯化作为探针,应用微量点样技术将探针固定在硝酸纤维素膜上,制备诊断基因芯片;同时对制备的基因芯片进行有效性监控和特异性、重复性的质量控制;然后提取样品核酸,PCR扩增并用生物素标记,并将所获得的扩增产物与诊断基因芯片进行特异性的逆向点杂交,最后通过芯片扫描来实现对病原的高效检测和分析判断。试验结果表明病料中抽提的核酸与芯片杂交的信号为阳性且较明显,说明制备的猪瘟病毒和猪细小病毒检测基因芯片有效性监控正常且两种病原的特异性和重复性均良好。  相似文献   

5.
对伪狂犬病病毒(PRV)、猪细小病毒(PPV)和流行性乙型脑炎病毒(JEV)检测基因芯片的制备及该芯片的检测技术进行了研究。选定靶基因最佳点样质量浓度为200 mg/L,用基因芯片点样仪将其点制在氨基化基片上,经干燥、水合、紫外线交联和洗涤后,成功制备了PRV-PPV-JEV检测基因芯片。以CY3荧光素标记的dCTP经PCR扩增制备探针,对芯片的质量进行了评价。结果表明,制备的芯片质量好,探针最佳使用质量浓度为3 000μg/L,芯片系统检测灵敏度可达3μg/L。该芯片可同时检测PRV、PPV和JEV,其灵敏度高、特异性强,芯片可重复使用,室温下至少可保存4个月。  相似文献   

6.
为探索建立马病病毒基因芯片检测方法,采用人工拼接的方式拼接了非洲马瘟病毒(ASHV)核酸序列,通过分子克隆技术获得西尼罗病毒(WNV)和马冠状病毒(ECV)的特异基因片段。用芯片点样仪逐点分配到处理过的玻片上,制备成检测芯片。以拼接、克隆的核酸序列为模板通过多重不对称RT-PCR进行特异性扩增和荧光标记后滴加到芯片上进行杂交,对杂交结果进行扫描检测和计算机软件分析。结果显示,制备的基因芯片可同时检测和鉴别上述3种病毒,ECV质粒样品、WNV质粒样品检测灵敏度为102拷贝;AHSV质粒样品检测灵敏度为104拷贝。其他病毒材料未出现荧光信号,验证了本方法的特异性。证明基因芯片技术可快速、准确和灵敏地同时进行多种病毒的检测。  相似文献   

7.
为建立同时检测皮毛中携带的布鲁氏菌、大肠杆菌O157、金黄色葡萄球菌、乙型溶血性链球菌、丹毒杆菌、铜绿假单胞杆菌6种致病菌的基因芯片检测方法,本研究根据NCBI中细菌的16S rDNA和gyrB基因序列,分别设计通用引物和特异性寡核苷酸探针.点样制备检测基因芯片,核酸杂交后,优化并建立同时检测6种致病菌的基因芯片方法.结果表明:使用47%甲酰胺杂交液,42℃摇转杂交4h为最佳杂交条件.建立的基因芯片方法在多种致病菌之间无交叉反应,检测敏感性可达10拷贝.制备的基因芯片稳定,有效保存期为6个月.该基因芯片对临床样品的检测结果与PCR平行检测结果的符合率为100%.本研究建立的基因芯片检测皮毛中6种致病菌的方法具有高通量、灵敏和特异的特点,为临床皮毛中致病菌的检测和监控提供了新的检测方法.  相似文献   

8.
对猪伪狂犬病(Pseudorabies virus,PRV)、猪细小病毒病(Porcine parvovirus,PPV)和猪流行性乙型脑炎(Japanese encephalitis virus,JEV)检测基因芯片的制备及该芯片的检测方法进行了研究。试验克隆和鉴定了16个芯片靶基因,经筛选,取其中13个靶基因PRV gB、gG、TK和gE;PPV NS2、NS3、VP1和VP2以及JEV C、PrM/M、E、NS1和NS5制备PRV、PPV和JEV检测基因芯片,基因芯片点样系统SpotArrayTM 24将靶基因点样于氨基化玻片表面,靶基因最佳点样浓度为200 ng/μL,探针扩增标记反应体系中,Cy3-dCTP使用终浓度为2.5μmol/L,芯片杂交温度可在44℃~60℃之间任意选择。以PRRSV、CSFV、PCV1、PCV2、TGEV、HPS、PAP、E.coli和S.pp菌毒株DNA或CDNA为模板标记制备的探针均不与PRV、PPV、和JEV检测基因芯片杂交,芯片检测的灵敏度为3 pg/μL,芯片批间重复性好,同一张芯片可进行至少10次的重复杂交。该方法对8株PRV、5株PPV和JEV SA14-14-2单独或混合样品检测均为阳性,可区分伪狂犬病病毒野毒和基因缺失疫苗毒,对20份临床样品单独或混合感染的检出率分别为:单独感染PRV检出率15%(3/20),PPV 5%(1/20),JEV 0%(0/20);PRV和PPV混合感染检出率15%(3/20),PRV和JEV混合感染检出率5%(1/20),JEV和PPV混合感染检出率5%(1/20),三者混合感染的检出率5%(1/20)。与PRV、PPV和JEV多重PCR检测方法比较,芯片检测的灵敏度大大提高,同时可区分PRV野毒和基因缺失疫苗毒,对20份临床样品的检出率一致。  相似文献   

9.
建立了可同时筛选禽流感病毒(AIV)通用型、H4、H5、H6、H7、H9、N1、N2、N9亚型及鸡新城疫病毒(NDV)、鸡减蛋综合征病毒(EDSV)的基因芯片检测方法.从GenBank中下载相关序列,利用分子生物学软件设计特异性引物和杂交探针.使用Dr.chip系统进行芯片点样、杂交、显色、读数,优化反应条件后做灵敏度、特异性试验,然后应用于临床检验.结果显示,各病原间无交叉反应,探针可特异性识别靶基因;病原的最低浓度为4.83 pg/μL,灵敏度较高;每个梯度的两个反应结果一致,重复性良好.对临床样品检验,结果同病毒分离鉴定方法一致.本研究建立的基因芯片检测方法可用于禽流感通用型、H4、H5、H6、H7、H9、N1、N2、N9亚型及NDV、EDSV的鉴别检测.  相似文献   

10.
本研究以猪细小病毒VP2基因为目的基因设计引物和探针,通过不对称PCR扩增Cy3标记的DNA片段与固定于芯片上的探针进行杂交,对杂交芯片进行扫描分析,根据荧光信号的强度来确定是否存在猪细小病毒。结果表明,采用浓度为5μmol/L的探针与PCR产物于47℃杂交1 h即可得到清晰的荧光信号,检测灵敏度可达34.5 ng/μL,同时用制备的基因芯片对临床20份疑似猪细小病毒病感染的病料进行检测,检测结果与PCR检测结果符合率达100%,表明基因芯片检侧技术是一种灵敏度高、特异好的检侧方法。该方法的建立可以快速有效地对猪细小病毒做出诊断,具有较好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号