首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Influenza A virus causes respiratory disease in both humans and animals. In this study, a survey of influenza A antibodies in domestic dogs and cats was conducted in 47 animal shelters in 19 provinces of Thailand from September 2011 to September 2014. One thousand and eleven serum samples were collected from 932 dogs and 79 cats. Serum samples were tested for influenza A antibodies using a multi‐species competitive NP‐ELISA and haemagglutination inhibition (HI) assay. The NP‐ELISA results showed that 0.97% (9/932) of dogs were positive, but all cat samples were negative. The HI test against pandemic H1N1, human H3N2 and canine H3N2 showed that 0.64% (6/932) and 1.20% (1/79) of dogs and cats were positive, respectively. It is noted that all six serum samples (5 dogs and 1 cat) had antibodies against pandemic H1N1. In summary, a serological survey revealed the evidence of pandemic H1N1 influenza exposure in both dogs and cats in the shelters in Thailand.  相似文献   

2.
To investigate the potential transmission of subtype H3 influenza virus to cats, a serological survey was carried out in South Korea. Serum samples (n = 1027) were obtained from 809 pet cats and 218 domesticated cats living in urban colonies (D-cats) from 2008 to 2010, and tested using an influenza anti-nucleoprotein (NP)-specific enzyme-linked immunosorbent assay (ELISA) and the haemagglutination inhibition (HI) test, which was recommended by the World Organization for Animal Health. Anti-influenza virus antibodies were detected in 3.12% and 2.43% of cat sera tested using the NP-specific ELISA and HI test, respectively. Anti-H3 antibodies were also identified when the HI assay was used for influenza virus serotyping. These data may indicate the sporadic transmission of subtype H3 influenza virus from other infected species to cats in South Korea.  相似文献   

3.
《Veterinary microbiology》2015,175(2-4):369-373
From January 2010 to January 2012, we collected sera samples from 700 stray cats living in close proximity to poultry farms or poultry markets in 4 provinces in China. A number of cats had evidence of avian and canine influenza virus infection: avian H9N2 [24 by HI ≥1:20 and 16 by microneutralization (MN) assay ≥1:80]; avian H5N1 (9 by HI ≥1:20 and 3 by MN assay ≥1:80) and canine H3N2 (32 by HI ≥1:20 and 18 by MN ≥1:80). Bivariate analyses revealed that cats sampled near live poultry markets and cats with influenza-like-illness were at increased risk of having elevated antibody titers by HI against avian H9N2, avian H5N1, or canine H3N2 viruses. Hence, cats may play a very important role in the ecology of novel influenza viruses and periodic epidemiological surveillance for novel influenza infections among stray cats could serve as an early warning system for human threats.  相似文献   

4.
In this study, antibody responses after equine influenza vaccination were investigated among 1,098 horses in Korea using the hemagglutination inhibition (HI) assay. The equine influenza viruses, A/equine/South Africa/4/03 (H3N8) and A/equine/Wildeshausen/1/08 (H3N8), were used as antigens in the HI assay. The mean seropositive rates were 91.7% (geometric mean antibody levels (GMT), 56.8) and 93.6% (GMT, 105.2) for A/equine/South Africa/4/03 and A/equine/Wildeshausen/1/08, respectively. Yearlings and two-year-olds in training exhibited lower positive rates (68.1% (GMT, 14) and 61.7% (GMT, 11.9), respectively, with different antigens) than average. Horses two years old or younger may require more attention in vaccination against equine influenza according to the vaccination regime, because they could be a target of the equine influenza virus.  相似文献   

5.
Influenza A is a respiratory disease common in the swine industry. Three subtypes, H1N1, H1N2 and H3N2 influenza A viruses, are currently co-circulating in swine populations in Korea. An outbreak of the highly pathogenic avian influenza H5N1 virus occurred in domestic bird farms in Korea during the winter season of 2003. Pigs can serve as hosts for avian influenza viruses, enabling passage of the virus to other mammals and recombination of mammalian and avian influenza viruses, which are more readily transmissible to humans. This study reports the current seroprevalence of swine H1 and H3 influenza in swine populations in Korea by hemagglutination inhibition (HI) assay. We also investigated whether avian H5 and H9 influenza transmission occurred in pigs from Korea using both the HI and neutralization (NT) tests. 51.2% (380/742) of serum samples tested were positive against the swine H1 virus and 43.7% (324/742) were positive against the swine H3 virus by HI assay. The incidence of seropositivity against both the swine H1 virus and the swine H3 virus was 25.3% (188/742). On the other hand, none of the samples tested showed seropositivity against either the avian H5 virus or the avian H9 virus by the HI and NT tests. Therefore, we report the high current seroprevalence and co-infectivity of swine H1 and H3 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 and H9 influenza transmission to Korean pigs.  相似文献   

6.
为了解灵缇犬对马流感病毒A/Equine/Huabei/01/2007(H3N8)的易感性,将马流感病毒培养液以1.0 mL(含105.7EID50)经静脉途径接种4条灵缇犬,另以2.0 mL(含2×105.7EID50)经滴鼻、点眼方式接种3条灵缇犬。采用临床症状和病理学观察、免疫酶组织化学染色技术、病毒分离、HI抗体检测和流感病毒受体类型检测技术,对病毒在灵缇犬体内的感染情况进行了系统研究。结果表明,感染的7条犬在整个试验观察期间体温等临床指标均无异常变化,未见明显的肉眼和组织学病变。感染后5 d,4条感染犬的气管、支气管和细支气管上皮细胞内流感病毒M蛋白均为阳性,1条犬的咽拭子病毒分离结果为阳性,1条犬的马流感病毒H3亚型HI抗体阳性。感染后14d,剩余3条感染犬中有2条犬马流感病毒H3亚型HI抗体呈阳性。试验证明,目前流行的A/Equine/Huabei/01/2007(H3N8)病毒可以感染灵缇犬,但不导致灵缇犬出现明显的临床症状。灵缇犬的喉头、气管上皮细胞具有与马流感病毒结合的SAα2,3 Gal受体。  相似文献   

7.
Swine influenza is caused by type A influenza virus. Pigs can be infected by both avian and human influenza viruses; therefore, the influenza virus infection in pigs is considered an important public health concern. The aims of present study were to asses the seroprevalence of swine influenza subtypes in Spain and explore the risk factors associated with the spread of those infections. Serum samples from 2151 pigs of 98 randomly selected farms were analyzed by an indirect ELISA for detection of antibodies against nucleoprotein A of influenza viruses and by the hemagglutination inhibition (HI) using H1N1, H1N2 and H3N2 swine influenza viruses (SIV) as antigens. Data gathered in questionnaires filled for each farm were used to explore risk factors associated with swine influenza. For that purpose, data were analyzed using the generalized estimating equations method and, in parallel by means of a logistic regression. By ELISA, 92 farms (93.9%; CI(95%): 89.1-98.7%) had at least one positive animal and, in total, 1340/2151 animals (62.3%; CI(95%): 60.2-64.3%) were seropositive. A total of 1622 animals (75.4%; CI(95%): 73.6-77.2%) were positive in at least one of the HI tests. Of the 98 farms, 91 (92.9%; CI(95%): 87.7-98.1%) had H1N1 seropositive animals; 63 (64.3%; CI(95%): 54.6-73.9%) had H1N2 seropositive pigs and 91 (92.9%; CI(95%): 87.7-98.1%) were positive to H3N2. Mixed infections were detected in 88 farms (89.8; CI(95%): 83.7-95.9%). Three risk factors were associated with seroprevalences of SIV: increased replacement rates in pregnancy units and, for fatteners, existence of open partitions between pens and uncontrolled entrance to the farm.  相似文献   

8.
[目的]调查山东省聊城市规模化驴场中马流感病毒的感染情况,并分析其可能的来源。[方法]从聊城的规模化驴场采集病料和血清,通过HI试验检测驴血清中的马流感病毒H3N8亚型抗体的阳性率。使用RT-PCR技术扩增肺脏和鼻腔棉拭子样品中的马流感病毒M基因,对获得的马流感病毒M基因与不同流感病毒的M基因进行序列比对,推测其来源。[结果]HI试验表明,120个血清样品中马流感病毒H3N8亚型血清抗体阳性率为33.3%(40/120);其中,母驴的马流感病毒H3N8亚型血清抗体阳性率为42.5%(17/40)、公驴为32.5%(13/40)、驴驹为25.0%(10/40)。通过RT-PCR检测发现,32.3%(21/65)的样品可测出目的条带。通过序列比对得出,该试验获得的流感病毒M基因与马属动物的H3N8亚型流感病毒高度同源(CY032222、CY032318、CY028821等),同源性最高可达99.8%。[结论]马流感病毒在聊城周边的数个规模化养驴场发生流行。该研究从驴体内分离的流感病毒M基因属于马流感病毒H3N8亚型M基因。  相似文献   

9.
Natural and experimental infections have shown that cats are susceptible to highly pathogenic avian influenza A virus subtype H5N1 (HPAIV H5N1). Cats can be severely affected and die from the disease, but subclinical infections have also been reported. To learn more about the role of cats in the spread of the virus and about the risk posed to cats, the prevalence of H5N1 virus was examined in 171 cats from areas in Germany and Austria in which birds infected with HPAIV H5N1 had been found. Pharyngeal swabs were examined for H5N1 virus using real-time polymerase chain reaction, and serum samples were tested for antibodies to influenza virus. None of the cats showed evidence of infection with H5N1 virus. Prevalence of H5N1 virus was determined to be <1.8% (95% confidence interval (CI): 0.000000-0.017366); prevalence of antibodies was <2.6% (95% CI: 0.000000-0.025068).  相似文献   

10.
In the period December 1979-May 1980 a respiratory disease spread rapidly through pig herds in The Netherlands. Surveillance of 12 pig farms resulted in isolation of 22 influenza A-Swine-H1N1 (Hsw1N1) strains from 9 pig herds. The morbidity rate was high but the mortality rate was nil. Retardation in growth was observed. Sera collected from affected pig herds showed a fourfold increase in haemagglutination inhibition (HI) titre against A-Swine-H1N1 virus. Sera collected on five farms showed a geometric mean HI titre against the A-H3N2 virus above 100. A significant HI titre increase against this virus was found in sera collected on three farms. These findings indicated a recent infection by this virus. A-H3N2 virus was not isolated. The Dutch Swine-1980 isolates showed in the cross-HI test a distant antigenic relationship with the classical A/Swine/Iowa/30 (H1N1) virus and one-sided close antigenic relationship with A/New Jersey/76 (H1N1) virus.HI antibody to A/Swine/Nederland/80 (H1N1) virus was found in 4, 0, and 44%, to A/New Jersey/76 (H1N1) virus in 0.5, 0.4, and 42%, and to A/Swine/Iowa/30 (H1N1) virus in 0.5, 1, and 30% of pig sera collected in 1976, 1977, and 1980, respectively. HI antibody to A/Hong Kong/68 (H3N2) virus was detected in 36, 56, and 68%, and to A/Victoria/75 (H3N2) virus in 38, 73, and 68% of these sera, respectively.The results of this study indicate that pigs in The Netherlands, like those in North America, Southeast Asia, Japan, and Western Europe harbour A-Swine-H1N1 and A-H3N2 influenza viruses and are thus potential reservoirs for future human pandemics.  相似文献   

11.
对2009年H1N1甲型流感流行前后的上海地区养殖场户410份猪血清样品,分别采用血凝抑制试验(hemagglutination inhibition,HI)和酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)进行检测H1N1甲型流感病毒和猪流感病毒(Swine in?uenza virus,SIV)。检测结果表明,除2007年外,2008~2010年猪血清中均存在不同水平的HI抗体,阳性率呈显著上升趋势,且抗体水平与猪群饲养周期及饲养密度正相关,而与猪流感病毒的流行无相关性。  相似文献   

12.
Antigenic variation among equine H 3 N 8 influenza virus hemagglutinins   总被引:1,自引:0,他引:1  
To provide information on the antigenic variation of the hemagglutinins (HA) among equine H 3 influenza viruses, 26 strains isolated from horses in different areas in the world during the 1963-1996 period were analyzed using a panel of monoclonal antibodies recognizing at least 7 distinct epitopes on the H 3 HA molecule of the prototype strain A/equine/Miami/1/63 (H 3 N 8). The reactivity patterns of the virus strains with the panel indicate that antigenic drift of the HA has occurred with the year of isolation, but less extensively than that of human H 3 N 2 influenza virus isolates, and different antigenic variants co-circulate. To assess immunogenicity of the viruses, antisera from mice vaccinated with each of the 7 representative inactivated viruses were examined by neutralization and hemagglutination-inhibition tests. These results emphasize the importance of monitoring the antigenic drift in equine influenza virus strains and to introduce current isolates into vaccine. On the basis of the present results, equine influenza vaccine strain A/equine/Tokyo/2/71 (H 3 N 8) was replaced with A/equine/La Plata/1/93 (H 3 N 8) in 1996 in Japan. The present results of the antigenic analysis of the 26 strains supported the results of a phylogenetic analysis, that viruses belonging to each of the Eurasian and American equine influenza lineages have independently evolved. However, the current vaccine in Japan consists of two American H 3 N 8 strains; A/equine/Kentucky/1/81 and A/equine/La Plata/1/93. It is also therefore recommended that a representative Eurasian strain should be included as a replacement of A/equine/Kentucky/1/81.  相似文献   

13.
In August 2007, an outbreak of equine influenza occurred among vaccinated racehorses with Japanese commercial equine influenza vaccine at Kanazawa Racecourse in Ishikawa prefecture in Japan. Apparent symptoms were pyrexia (38.2-41.0 degrees C) and nasal discharge with or without coughing, although approximately half of the infected horses were subclinical. All horses had been shot with a vaccine that contained two inactivated H3N8 influenza virus strains [A/equine/La Plata/93 (La Plata/93) of American lineage and A/equine/Avesta/93 (Avesta/93) of European lineage] and an H7N7 strain (A/equine/Newmarket/1/77). Influenza virus, A/equine/Kanazawa/1/2007 (H3N8) (Kanazawa/07), was isolated from one of the nasal swab samples of diseased horses. Phylogenetic analysis indicated that Kanazawa/07 was classified into the American sublineage Florida. In addition, four amino acid substitutions were found in the antigenic sites B and E in the HA1 subunit protein of Kanazawa/07 in comparison with that of La Plata/93. Hemagglutination-inhibition (HI) test using 16 serum samples from recovering horses revealed that 1.4- to 8-fold difference in titers between Kanazawa/07 and either of the vaccine strains. The present findings suggest that Japanese commercial inactivated vaccine contributed to reducing the morbidity rate and manifestation of the clinical signs of horses infected with Kanazawa/07 that may be antigenically different from the vaccine strains.  相似文献   

14.
OBJECTIVE: To evaluate canarypox-vectored equine influenza virus (EIV) vaccines expressing hemagglutinins of A/equine/Kentucky/94 (vCP1529) and A2/equine/Ohio /03 (vCP2242) for induction of antibody responses against canine influenza virus (CIV) in dogs. ANIMALS: 35 dogs. PROCEDURES: Dogs were randomly allocated into 4 groups; group 1 (n = 8) and group 2 (9) were inoculated SC on days 0 and 28 with 1.0 mL (approx 10(5.7) TCID(50)) of vCP1529 and vCP2242, respectively. Dogs in group 3 (n = 9) were inoculated twice with 0.25 mL (approx 10(5.7) TCID(50)) of vCP2242 via the transdermal route. The 9 dogs of group 4 were control animals. All dogs were examined for adverse reactions. Sera, collected on days -1, 7, 13, 21, 28, 35, and 42, were tested by hemagglutination inhibition (HI) and virus neutralization (VN) assays for antibodies against CIV antigens A/Canine/FL/43/04-PR and A/Canine/NY/115809/05, respectively. RESULTS: Inoculations were tolerated well. The HI and VN antibodies were detected by 7 days after primary inoculation. Most dogs of groups 1 and 2 and all dogs of group 3 had detectable antibodies by 14 days after initial inoculation. The second inoculation induced an anamnestic response, yielding geometric mean HI titers of 139, 276, and 1,505 and VN titers of 335, 937, and 3,288 by day 42 (14 days after booster inoculation) in groups 1, 2, and 3, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Canarypox-vectored EIV vaccines induce biologically important antibodies and may substantially impact CIV transmission within a community and be of great value in protecting dogs against CIV-induced disease.  相似文献   

15.
In 2010, the World Organisation for Animal Health recommended the inclusion of a Florida sublineage clade2 strain of equine influenza virus (H3N8), which is represented by A/equine/Richmond/1/07 (Richmond07), in equine influenza vaccines. Here, we evaluate the antigenic differences between Japanese vaccine strains and Richmond07 by performing hemagglutination inhibition (HI) assays. Ferret antiserum raised to A/equine/La Plata/93 (La Plata93), which is a Japanese vaccine strain, reacted with Richmond07 at a similar titer to La Plata93. Moreover, two hundred racehorses exhibited similar geometric mean HI antibody titers against La Plata93 and Richmond07 (73.1 and 80.8, respectively). Therefore, we can expect the antibody induced by the current Japanese vaccines to provide some protection against Richmond07-like viruses.  相似文献   

16.
以灭活马流感病毒(EIV)A/Equine/Jilin/1/1989(H3N8)为免疫原,免疫Balb/c小鼠,经常规细胞融合后,用血凝抑制试验(H1)和间接ELISA方法筛选获得3株(3C2、5G10和5A10)能稳定分泌H3N8亚型马流感病毒单克隆抗体(mAb)的杂交瘤细胞株.其中3C2和5G10为IgG2α,5A...  相似文献   

17.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009. The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test. Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively. Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.  相似文献   

18.
The natural reservoir of all known subtypes of influenza A viruses are aquatic birds, mainly of the orders Anseriformes and Charadriiformes in which the infection is asymptomatic and the viruses stay at an evolutionary equilibrium. However, mammals may occasionally contract influenza A virus infections from this pool. This article summarizes: (i) natural infections in mammals including pigs, horses, marine mammals, ferrets, minks; (ii) results from experimental infections in several animal models including mice, ferrets, primates, rats, minks, hamsters and (iii) evidence for the increased pathogenicity of the current influenza A H5N1/Asia viruses for mammals. Several reports have shown that a number of mammalian species, including pigs, cats, ferrets, minks, whales, seals and finally also man are susceptible to natural infection with influenza A viruses of purely avian genetic make up. Among the mammalian species naturally susceptible to avian influenza virus the pig and the cat might exert the greatest potential public health impact. Despite numerous studies in animal and cell culture models, the basis of the extended host spectrum and the unusual pathogenicity of the influenza A H5N1 viruses for mammals is only beginning to be unraveled. Recently, also the transmission of equine influenza A virus to greyhound racing dogs has been documented.  相似文献   

19.
A serological survey for the detection of antibodies to influenza A(H1N1)pdm09 was carried out in a population of dogs and cats in Germany. A total of 1150 sera collected in 2010 and 2011 were screened using an ELISA targeting anti‐nucleoprotein NP antibodies. Those initially screened positive samples were subsequently tested for antibodies to N1 neuraminidase followed by a virus neutralization test using A/Bayern/74/2009 strain. A prevalence of A(H1N1)pdm09‐specific antibodies of 0.13% and 1.93% was estimated among dogs and cats, respectively. Evidence of exposure to other influenza A virus subtypes was also observed.  相似文献   

20.
The Asian lineage highly pathogenic avian influenza (HPAI) H5N1 virus is a known pathogen of birds. Only recently, the virus has been reported to cause sporadic fatal disease in carnivores, and its zoonotic potential has been dominating the popular media. Attention to felids was drawn by two outbreaks with high mortality in tigers, leopards and other exotic felids in Thailand. Subsequently, domestic cats were found naturally infected and experimentally susceptible to H5N1 virus. A high susceptibility of the dog to H3N8 equine influenza A virus had been reported earlier, and recently also HPAI H5N1 virus has been identified as a canine pathogen. The ferret, hamster and mouse are suitable as experimental animals; importantly, these species are also kept as pets. Experimental intratracheal and oral infection of cats with an HPAI H5N1 virus isolate from a human case resulted in lethal disease; furthermore, cats have been infected by the feeding of infected chickens. Spread of the infection from experimentally infected to in-contact cats has been reported. The epidemiological role of the cat and other pet animal species in transmitting HPAI H5N1 virus to humans needs continuous consideration and attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号