首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two different groups of bacteria carrying genes encoding for resistance to antibiotics may be transmitted from animals to humans via food products: a.) obligate infectious agents (enteric pathogens, e.g. Salmonella enterica spp., Campylobacter spp., EHEC) and b) facultative pathogenic species (e.g. E. coli, enterococci). Thus far, it is unknown whether genes encoding for resistance to antibiotics from these bacteria may be transferred to bacteria in normal flora of the host. The transfers of genes encoding for resistance to vancomycin from animal sources to the mucosa of humans has been suggested. Thus, there is a threat that these plasmid-encoded resistance genes may also be transferred to other gram-positive organisms present in the human flora. Vancomycin is the antibiotic in reserve for treatment of infections caused by oxacillin (methicillin) resistant strains of S. aureus and by strains of pneumococcus resistant to penicillin.  相似文献   

2.
Antibiotics are used in food animal production to treat diseases and also to improve performance. Antibiotics are not used on all farms, and antibiotic resistance is occasionally found on farms that do not use antibiotics. Rendered animal protein products are often included in poultry feeds and could potentially serve as a source of antibiotic-resistant bacteria. One hundred sixty-five rendered animal protein products from cattle, poultry, and fish were aseptically collected from poultry feed mills. Fifty-five percent of the poultry meal samples had detectable levels of gram-negative bacteria ranging from 40 to 10,440 colony-forming units/g of sample. Poultry meal and meat and bone meal had the greatest number of samples with bacteria resistant to five or more antibiotics. A high percentage of feed samples (85%) contained bacteria resistant to amoxicillin, ampicillin, clavulanic acid, or cephalothin, whereas few samples contained bacteria resistant to ciprofloxacin, kanamycin, or trimethoprim/sulfamethoxazole. Acinetobacter calcoaceticus, Citrobacter freundii, and Enterobacter cloacae were the most commonly isolated antibiotic-resistant bacteria. Isolation for Salmonella was also performed, with 14% of the meat and bone meal samples containing Salmonella sp. Only one of the meat and bone meal isolates, Salmonella livingstone, was resistant to five or more antibiotics. Many of the antibiotic-resistant bacteria contained integrons, genetic elements that mediate multiple drug resistance.  相似文献   

3.
Antibiotic use not only selects for resistance in pathogenic bacteria, but also in the commensal flora of exposed individuals. Veterinary surgeons regularly prescribe antibiotics for food animals to treat bacterial infections just as doctors do for human patients. In addition, however, animal feeds contain added antibiotics not for therapy but for economic reasons: to enhance the growth rate of these animals. Several of the antibiotics used as growth promoters are analogues of and fully cross resistant with important antibiotics used in human medicine. As a result of this high exposure to antibiotics, the prevalence of resistant bacteria in the faecal flora of these animals is high. These resistant bacteria can be directly and indirectly, via foods of animal origin, transferred to humans and either colonize the human intestinal tract or exchange their resistance genes with commensal bacteria of humans. As the intestinal flora functions as a reservoir of resistance genes for pathogenic bacteria and because many bacterial species of the intestinal flora are potential pathogens, the efficacy of antibiotic therapy in human medicine may be jeopardized.  相似文献   

4.
AIM: To determine the resistance to antibiotics among the indictor bacteria, Escherichia coli and Enterococcus spp, isolated from the faeces of healthy pigs on three conventional pig farms and one organic farm in the North Island of New Zealand. METHODS: Faecal samples, collected at intervals between March and October 2001, were plated onto MacConkey agar and Slanetz-Bartley agar and examined after 1-3 days incubation for colonies resembling E. coli and Enterococcus spp, respectively. Typical colonies were subcultured for further identification and storage. The isolates were tested for antibiotic resistance, using disc diffusion, to ampicillin, gentamicin, streptomycin, and tetracycline. Escherichia coli isolates were also tested for resistance to ciprofloxacin, cotrimoxazole and neomycin. Enterococcus spp isolates were also tested for resistance to vancomycin, erythromycin and virginiamycin. RESULTS: A total of 296 E. coli and 273 Enterococcus spp isolates were obtained from the three conventional farms, and 79 E. coli and 80 Enterococcus spp isolates were obtained from the organic farm. All the E. coli isolates from both the conventional and organic pig farms were susceptible to ciprofloxacin, and all the Enterococcus spp isolates were susceptible to ampicillin, gentamicin and vancomycin. Isolates of E. coli from conventional pig farms were resistant to gentamicin (0.7%), neomycin (0.7%), ampicillin (2.7%), cotrimoxazole (11%), streptomycin (25%) and tetracycline (60%). Enterococcus spp isolates from the same farms were resistant to erythromycin (68%), tetracycline (66%), streptomycin (54%) and virginiamycin (49%). By contrast, for the organic pig farm 相似文献   

5.
Antibiotic resistance in pathogenic bacteria has been a problem in both developed and developing countries. This problem is especially evident in Salmonella typhimurium, one of the most prevalent foodborne pathogens. While performing in vitro gentamicin protection-based invasion assays, we found that certain isolates of multiresistant S. typhimurium can be 'induced' to exhibit new resistance profiles. That is, bacteria become resistant to a wider range of antibiotics and they also exhibit quantitative increases in MIC values for antibiotics that were part of their pre-induction antibiograms. This 'induction' process involves growing the bacteria to stationary phase in the presence of antibiotics such as ampicillin, amoxicillin or ticarcillin. Since the isolates studied exhibited resistance to ampicillin, amoxicillin and ticarcillin prior to exposing the bacteria to these antibiotics, the observed phenomenon suggests that resistant Salmonella not only have a selective advantage over non-resistant Salmonella but their resistance phenotypes can be accentuated when an inappropriate antibiotic is used therapeutically.  相似文献   

6.
Cloacal and pharyngeal swabs from 100 tree-nesting Double-crested cormorant (DCC) chicks were examined by culture for commensal and potentially pathogenic bacteria. No Salmonella or Erysipelothrix were isolated from the cloacal swabs. Twenty-two cloacal swabs were positive for Campylobacter, of which 14 were C. jejuni, C. coli, and 1 C. lari. None belonged to common serotypes isolated from humans or animals in recent years in Canada. Tests for antimicrobial drug resistance among 187 commensal Escherichia coli isolates from the cloacal swabs indicated that < or =5% were resistant to any of the 12 antibiotics tested. This contrasts with the frequently high resistance rates among E. coli isolates from poultry. Pharyngeal swabs from DCC were negative for Pasteurella multocida. Culture of cloacal swabs from 100 ground-nesting DCC chicks resulted in the recovery of 19 Salmonella isolates, all of which were S. enterica serotype Typhimurium. None of these isolates were resistant to any of the 12 antibiotics tested. Altogether, these findings suggest that DCC from this region are not being colonized with commensal or potentially pathogenic enteric bacteria from agricultural or human sources and that enteric bacteria isolated from these birds are unlikely to contribute to a gene pool of antimicrobial drug resistance.  相似文献   

7.
This study investigated the occurrence and antimicrobial resistance profiles of Escherichia coli and Salmonella sp. isolated from swine samples submitted to the Minnesota Veterinary Diagnostic Laboratory (MVDL) in Saint Paul, Minnesota from 1995 to 2004. During this time period, a total of 5072 E. coli and 2793 Salmonella sp. was isolated. Most of these isolates were found to be resistant to the tetracycline and beta-lactam group of antibiotics. Resistance to spectinomycin was also frequently observed. An increasing trend in ampicillin resistance and a decreasing trend in apramycin resistance were seen in both pathogens, although ampicillin resistance was relatively higher in E. coli than in Salmonella. Aminoglycoside (amikacin) and quinolone (enrofloxacin) were the only antimicrobials to which minimum or no resistance was observed. The resistance of pig pathogens to several antibiotics indicates the need to routinely monitor the use of these antimicrobials and their associated resistance in pig populations.  相似文献   

8.
Antimicrobials are essential for treatment of sick animals, but even if used correctly, may eventually lead to antimicrobial resistance. While this represents a potential hazard to humans, the great majority of resistant human pathogens, especially the more important ones, are unrelated to animal sources. A survey of informed medical opinion suggested that of the human antimicrobial resistance problem, <4% was seen as potentially linked to animal sources. This proportion related largely to zoonotic bacteria which by definition have the capacity to carry resistance between species, although the evidence for resulting harm remains limited. A recent study compared resistance among chicken, pig and cattle isolates of Salmonella spp., Campylobacter spp. and Escherichia coli from a series of EU countries. When tested against antimicrobial agents, this survey showed variation of resistance between countries, between hosts and between organisms. Such variation may give insight into preferred methods of antimicrobial administration or disease control, but it is clear that the epidemiology of antimicrobial resistance induction and dissemination in animals remains complex and is yet to be fully understood.  相似文献   

9.
Food of animal origin has been considered as an important vector for the transfer of antibiotic resistances from animal to man. Such a transfer is possible by three ways: through antibiotic residues in food, through the transfer of resistant foodborne pathogens or through the ingestion of resistant parts of the original food microflora and resistance transfer to pathogenic microorganisms. A literature review and own investigations were performed in order to asses the potential impact of antibiotic resistance in food on the consumer health. In the first report Salmonella and Staph, aureus isolates were screened for their antibiotic resistance profiles. As a result it could be shown that residues in fresh meat or milk are quantitatively of minor interest. The resistance profile of Salmonella depended on the origin (pig or poultry), but only serovars could be identified which are generally not responsible for systemic infections. Staph. aureus isolates did not show any resistances relevant for human medicine. In these cases food can be considered as safe concerning its role as a vector for antibiotic resistances. However, a resistance monitoring seems to be necessary.  相似文献   

10.
The prevalence of Salmonella in southern Africa in farm feeds and by-products of animal origin during 1982-1988 was determined. Salmonella occurred in 5.18% of the farm feed samples and in 9.54% of the by-product samples. Different serovars were isolated, some only once. The findings underestimate the true prevalence of Salmonella in farm feeds and by-products, and is representative of only the most severely contaminated products. The epidemiology of salmonellosis is discussed with special reference to the importance of multiple resistance to antibiotics, the increase in the number of cases of salmonellosis worldwide and "Salmonella free" feeds and foods. More detailed research on the role of farm feeds in the epidemiology of salmonellosis is required. Efforts should be made to increase awareness of the problem, to improve quality management at farm feed production plants and to develop efficient systems to monitor the hygienic safety of feeds and foods.  相似文献   

11.
Salmonella isolates from random-source cats designated for use in research were examined for antibiotic susceptibilities and the presence of plasmids containing R factors. The serotypes studied were Salmonella derby, S typhimurium, S anatum, S enteritidis, and S bredeney. Eighty percent of the isolates were resistant to one or more antibiotics. The greatest frequency of resistance was to streptomycin. The majority of the salmonella isolates transferred all or a part of their antibiotic resistance to an Escherichia coli K-12 recipient. Thermosensitive R factors were found in two S typhimurium isolates.  相似文献   

12.
Faecal samples were collected, as part of the National Health Surveillance Program for Cervids (HOP) in Norway, from wild red deer, roe deer, moose and reindeer during ordinary hunting seasons from 2001 to 2003. Samples from a total of 618 animals were examined for verocytotoxic E. coli (VTEC); 611 animals for Salmonella and 324 animals for Campylobacter. A total of 50 samples were cultivated from each cervid species in order to isolate the indicator bacterial species E. coli and Enterococcus faecalis / E. faecium for antibiotic resistance pattern studies. Salmonella and the potentially human pathogenic verocytotoxic E. coli were not isolated, while Campylobacter jejuni jejuni was found in one roe deer sample only. Antibiotic resistance was found in 13 (7.3%) of the 179 E. coli isolates tested, eight of these being resistant against one type of antibiotic only. The proportion of resistant E. coli isolates was higher in wild reindeer (24%) than in the other cervids (2.2%). E. faecalis or E. faecium were isolated from 19 of the samples, none of these being reindeer. All the strains isolated were resistant against one (84%) or more (16%) antibiotics. A total of 14 E. faecalis-strains were resistant to virginiamycin only. The results indicate that the cervid species studied do not constitute an important infectious reservoir for either the human pathogens or the antibiotic resistant microorganisms included in the study.  相似文献   

13.
为了解鱼塘生态体系大肠埃希菌和沙门菌的耐药情况,从广东省佛山某鱼塘随机采集草鱼及生活圈的水土样品中(包括鱼肠内容物、鱼塘底泥、鱼塘水)分离出47株大肠埃希菌和23株沙门菌.采用纸片扩散法(Kirby-bauer,KB)对分离菌株进行了15种抗生素的敏感性试验,结果显示100%的菌株均耐1种及1种以上的抗生素多表现出对氨...  相似文献   

14.
本研究采集某鸡场疑似感染鸡白痢的病死鸡组织,进行了沙门菌的分离、鉴定,以及对10种常见抗生素的药物敏感性试验。结果显示:分离株均为鸡白痢沙门菌,对阿米卡星(0%)、庆大霉素(0%)、头孢噻肟(3.70%)的耐药率较低,对链霉素(88.89%)、四环素(62.96%)、阿莫西林(51.85%)的耐药率较高;分离株至少可对1种药物产生耐药性,最多可对5种药物产生耐药性,70.37%的菌株可耐3种以上药物,其中耐3种药物的菌株数量最多(48.15%)。该研究结果不仅为临床合理用药提供指导,也为该地区鸡白痢的耐药性监测提供依据。  相似文献   

15.
新疆不同地区牛源大肠杆菌耐药性分析   总被引:1,自引:0,他引:1  
This study was aimed to investigate the resistance of Escherichia coli isolates from cattle farms in Xinjiang to antibiotics. The resistances of Escherichia coli isolates from cattle farms in five regions to commonly used antibiotic were determined using microdilution broth assay. Escherichia coli isolates were highly resistant to ampicillin (up to 39.3%) in all regions, and existed multidrug-resistant, but zero resistance was the dominant. Escherichia coli isolates from E cattle farm in Cherqi town, Baicheng county, exhibited resistant to three kinds of quinolones (6.7%). The results suggested that the resistances of Escherichia coli isolates to commonly used antibiotics were not serious in Xinjiang.  相似文献   

16.
Experiments to demonstrate the transfer of genes within a natural environment are technically difficult because of the unknown numbers and strains of bacteria present, as well as difficulties designing adequate control experiments. The results of such studies should be viewed within the limits of the experimental design. Most experiments to date have been based on artificial models, which only give approximations of the real-life situation. The current study uses more natural models and provides information about tetracycline resistance as it occurs in wild-type bacteria within the environment of the normal intestinal tract of an animal. Tetracycline sensitive, nalidixic acid resistant Escherichia coli isolates of human origin were administered to mice and chicken animal models. They were monitored for acquisition of tetracycline resistance from indigenous or administered donor E. coli. Five sets of in vivo experiments demonstrated unequivocal transfer of tetracycline resistance to tetracycline sensitive recipients. The addition of tetracycline in the drinking water of the animals increased the probability of transfer between E. coli strains originating from the same animal species. The co-transfer of unselected antibiotic resistance in animal models was also demonstrated.  相似文献   

17.
The aims of this study were to investigate the incidence of Salmonella, verocytotoxigenic Escherichia coli (VTEC)/Escherichia coli O157 and Campylobacter on four mixed farms and to characterize the isolates in terms of a range of virulence factors. Eighty-nine composite (five different samples from the same animal species combined) faecal [cattle (24), pigs (14), sheep (4), poultry (4), horses (7), deer (4), dogs (9), rodents (2) and wild birds (20)] samples, 16 composite soil samples plus 35 individual water samples were screened using culture-based, immunomagnetic separation and molecular methods. Salmonella was detected in bovine faeces, cattle and poultry house water. Salmonella serotypes/phage types included Dublin, Kiel and Typhimurium DT193, and most isolates were spvC, invA and rck positive. The pefA and rck genes were found exclusively in the non-Typhimurium strains, while Salmonella Dublin and Salmonella Kiel strains carried Salmonella genomic island I marker(s). VTEC/E. coli O157 were found in deer and dog faeces only. The E. coli O157 isolate was an enteroinvasive E. coli, while the VTEC isolate was untypable but carried the vt1, eaeA, hlyA, tir and eptD genes. This article reports the first confirmed carriage of E. coli O157 in Irish deer. Campylobacter species were not detected over the course of this study. It was concluded that [1] Salmonella, VTEC and Campylobacter have low (<5%) prevalence or are absent on the farms in this study; [2] water was an important source of bacterial pathogens; [3] both dogs and deer may act as a source of pathogenic E. coli and [4] key virulence and resistance determinants are widespread in farm Salmonella strains. This study highlights the need to control water as a source of pathogens and suggests that the domestic pets and deer should be considered in any farm risk assessment.  相似文献   

18.
beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases. The latter contributes predominantly to beta-lactam resistance in Gram-negative bacteria. A variety of beta-lactamases have been identified in bacteria derived from food-producing and companion animals and may further serve as a reservoir for beta-lactamase-producing bacteria in humans. While this review mainly describes beta-lactamases from animal-derived Escherichia coli and Salmonella spp., beta-lactamases from animal-derived Campylobacter spp., Enterococcus spp., Staphylococcus spp. and other pathogens are also discussed. Of particular concern are the increasingly-isolated plasmid-encoded AmpC-type CMY and extended-spectrum CTX-M beta-lactamases, which mediate acquired resistance to extended-spectrum beta-lactams. The genes encoding these enzymes often coexist with other antimicrobial resistance determinants and can also be associated with transposons/integrons, increasing the potential enrichment of multidrug resistant bacteria by multiple antimicrobial agents as well as dissemination of the resistance determinants among bacterial species. Characterization of beta-lactam-resistant animal-derived bacteria warrants further investigation of the type and distribution of beta-lactamases in bacteria of animal origin and their potential impact on human medicine.  相似文献   

19.
Antibiotic resistance in avian bacterial pathogens is a common problem in the Bangladesh poultry industry. The aim of the present study was to provide information on the present status of antibiotic resistance patterns in avian pathogenic Escherichia coli in Bangladesh. Of 279 dead or sick poultry of different ages, 101 pathogenic E coli strains isolated from broilers and layer hens with colibacillosis infections were screened to determine phenotypic expression of antimicrobial resistance against 13 antibiotics used in both veterinary and human medicine in Bangladesh. Of 101 pathogenic E. coli isolates, more than 55% were resistant to at least one or more of the tested compounds, and 36.6% of the isolates showed multiple-drug-resistant phenotypes. The most common resistances observed were against tetracycline (45.5%), trimethoprim-sulphamethoxazole (26.7%), nalidixic acid (25.7%), ampicillin (25.7%), and streptomycin (20.8%). Resistance to ciprofloxacin (12.9%), chlormaphenicol (8.9%), nitrofurantoin (2%), and gentamicin (2%) was also observed, and none of the isolates were resistant to tigecycline as well as extended spectrum beta-lactamase (ESBL) producers. One isolate was resistant to cefuroxime (1%), cefadroxil (1%), and mecillinam (1%) but was not an ESBL producer. Resistance rates, although significant in Bangladeshi isolates, were found to be lower than those reported for avian isolates from the Republic of Korea and clinical, avian, and environmental isolates from Bangladesh. The high level of antibiotic resistance in avian pathogens from Bangladesh is worrisome and indicates that widespread use of antibiotics as feed additives for growth promotion and disease prevention could have negative implications for human and animal health and the environment.  相似文献   

20.
By investigating the prevalence and resistance characteristics of Gram-negative bacteria from organic and conventional kept laying hens against 31 (Campylobacter: 29) different antibiotics using the microdilution method, we determined to what extent different keeping systems influence bacterial resistance patterns. For this purpose, samples from 10 organic and 10 conventional flocks in Bavaria (Germany) were investigated four times between January 2004 and April 2005. Altogether, 799 cloacal swabs and 800 eggs (contents and shells) were examined. The bacterial investigation performed with standardized cultural methods showed prevalence for all bacteria groups in about the same order of magnitude in the two different keeping systems: Salmonella spp. 3.5% (organic ([org])) versus 1.8% (conventional ([con])); Campylobacter spp. 34.8%(org) versus 29.0%(con) and E. coli 64.4%(org) versus 69.0%(con). Coliforms (Citrobacter, Enterobacter, Pantoea) were only isolated in single cases. In eggs, generally less bacteria were detected, predominantly Escherichia; Salmonella and Campylobacter were only scarcely isolated. Salmonella enterica ssp. enterica serovar Typhimurium (n=10) were resistant to up to nine, S. of the serogroup B (n=4) up to six antibiotics. All tested Salmonella (n=23) proved to be resistant to spectinomycin. Escherichia coli (n=257(org) and 276(con)) from organic layers showed significant lower resistance rates and higher rates of susceptible isolates to nine agents, namely amoxicillin/clavulanic acid, ampicillin, cefaclor, cefoxitin, cefuroxime, doxycycline, mezlocillin, neomycin and piperacillin. In contrast, only two antibiotics turned out to be more effective in conventional isolates (gentamicin and tobramycin). In the case of Campylobacter jejuni (n=118(org) and 99(con)), statistically significantly better rates were observed for isolates from organic flocks concerning imipenem and amoxicillin/clavulanic acid, whereas fosfomycin was more potent in strains from conventional flocks. Results of this study indicate that both resistance rates and mean minimum inhibitory concentrations of bacteria isolated from organic keeping systems have lower values than those from conventional ones, particularly recognizable for E. coli. Thus, organic livestock farming with its restrictions and additional requirements contributes to further effectiveness of antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号