首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
林业   4篇
农学   3篇
  12篇
综合类   7篇
农作物   2篇
水产渔业   10篇
畜牧兽医   7篇
植物保护   8篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2013年   5篇
  2012年   6篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1985年   2篇
  1981年   1篇
  1979年   3篇
  1968年   1篇
  1967年   1篇
  1963年   1篇
  1959年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
51.
A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of beta-conglycinin were well-separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools.  相似文献   
52.
Soybeans contain approximately 40% protein and 20% oil and represents an important source of protein in animal rations and human diets. Attempts are being made to increase further the overall protein content of soybeans by utilization of exotic germplasms. In this study, soybean cultivars from Nepal have been characterized and their potential as a germplasm resource for improvement of the protein content and quality of North American cultivars assessed. Soybean cultivars 'Sathia', 'Seti', 'Kavre', and 'Soida Chiny', indigenous to various regions of Nepal, contained 42-45% protein, which is significantly higher in comparison to that of the North American cultivar 'Williams 82' (39%). Fractionation of seed protein by high-resolution two-dimensional gel electrophoresis revealed differences in the protein profiles of these cultivars. Various isoelectric forms of glycinin and beta-conglycinin were identified by comparing the matrix-assisted laser desorption ionization time-of-flight mass fingerprinting data against the National Center for Biotechnology Information nonredundant database. Nepalese cultivar Sathia was distinct, lacking some isoelectric forms of acidic and basic glycinin subunits while expressing other unique forms. The contribution of these unique protein spots present in either Sathia or Williams 82 to the total protein content was quantified using scanning laser densitometry. Distinct restriction fragment length polymorphisms (RFLP) for group 1 glycinin genes were observed among the tested Nepalese genotypes, indicating sequence variation among the cultivars. Conversely, evaluation of RFLP for the genes encoding group 2 glycinins, beta-conglycinin, and Bowman-Birk proteinase inhibitors indicated a high degree of conservation in these genes. Determination of amino acid composition, a reflection of protein quality, indicated that the arginine content of the Nepalese soybeans ranged from 7.7 to 8.1%, which was 5-10% higher than the 7.4% expressed in Williams 82. Additionally, Karve and Seti contained significantly more cysteine than Williams 82. Nepalese high-protein soybeans having a desirable amino acid composition hold potential to increase the protein quality and diversity of North American cultivars.  相似文献   
53.
Yeast is a widely used recombinant protein expression system. We expanded its utility by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans. After the knockout of four genes to eliminate yeast-specific glycosylation, we introduced 14 heterologous genes, allowing us to replicate the sequential steps of human glycosylation. The reported cell lines produce complex glycoproteins with greater than 90% terminal sialylation. Finally, to demonstrate the utility of these yeast strains, functional recombinant erythropoietin was produced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号