首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
农学   1篇
  41篇
综合类   7篇
农作物   2篇
畜牧兽医   10篇
植物保护   5篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
42.
Polymeric and supramolecular models of humic substances (HSs) are considered. It has been noted that the HSs in natural objects can simultaneously occur in the forms of macromolecular polymers and supramolecularly organized monomers; macromolecular polymers of HSs can have some properties of suprastructures or be associated into aggregates, and covalent bonds can be formed between the monomers of supramolecules. Mineral particles of soil act as catalysts in chemical reactions between individual compounds, sorbents of biomolecules, and a surface for self-assembling HSs. It is supposed that the combination of such physicochemical processes and phenomena in soil as cementation, charring, incrustation, occlusion, sedimentation, sorption, coagulation, flocculation, encapsulation, complexation, and intercalation, as well as the entrapment of macroorganic, particulate, and soluble organic substances in micropores, can be as important for the stabilization of organic matter as the interactions between biomolecules with the formation of HSs.  相似文献   
43.
The mineralization rate of the organic matter (OM) in the aggregate fractions of a gray forest soil separated by repeated sieving through sieves with different mesh sizes was assessed. The samples of the soil aggregate fractions were incubated for 141 days under constant temperature and moisture, and the C-CO2 emission rate was measured. The mineralizable OM pool in the aggregates of <0.25, 1–0.25, and 3–1 mm in size from the soil under a forest contained easily (C1, k 1 > 0.1 days−1), moderately (C2, k 2 > 0.01 days−1), and difficultly (C3, k 3 > 0.001 days−1) mineralized compounds; the C1 and C2 components were present in the coarser aggregates. In the arable soil, the C1, C2, and C3 OM components were separated in the aggregates of <0.25 and 1–0.25 mm; the C1 and C3 were separated in the aggregates of 3–1 and 5–3 mm; and the C1 and C2 were separated in the coarsest (10–5 mm) aggregates. The highest content of potentially mineralized OM (C0) occurred in the aggregates of 1–0.25 and 3–1 mm, but the size of the mineralizable OM pool was more dependent on the portion of the aggregate fraction in the soil than on the absolute C0 content in the fraction. It was shown that the decrease in the share of coarse structural aggregates is accompanied by a depletion of potentially mineralized OM in the arable soil, and the formation of coarse aggregates is an important condition of the soil carbon sequestration.  相似文献   
44.
The contribution of mineral fertilization to the agrogeochemical cycles of major nutrients (N, P, K) was estimated. The agrogeochemical budgets of major nutrients (NPK) in the territory of Russia are unfavorable for agricultural production for the present and the nearest future. The removal of major nutrients with crops significantly exceeds their input to the soil with fertilizers and other sources. The nutritional degradation of arable soils increases, which can result in irreversible catastrophic consequences within 20–30 years.  相似文献   
45.
There are specific aspects in the problem of optimization of the physical conditions of soil fertility that are determined by the genetic features of soils and by the degree of their transformation under anthropogenic impacts. An assessment of the major agrophysical parameters of the loamy soddy-podzolic soils on the Chepetsk-Kil’mez interfluve (Kirov oblast) is presented. A comparison between the actual and optimal parameters of the agrophysical properties of these soils shows that the most significant differences are observed in the soil structural status, the bulk density, and the water permeability.  相似文献   
46.
The effect of three levels of soil moistening on the organic matter mineralization was assessed for three arable soils and wheat straw in the course of a 150-day-long incubation experiment. It was found that the intensity of the organic matter mineralization increased in parallel to soil moistening in the podzolized chernozem and dark-chestnut soil and remained stable in the gray forest soil, which was explained by the low content of easily mineralizable fractions of active organic matter in the latter soil. The mineralization of wheat straw depended on the soil moistening rather than on soil properties.  相似文献   
47.
The population dynamics of Salmonella enterica var. Typhimurium MAE 110 gfp, Escherichia coli O157:H7 gfp, and Pseudomonas fluorescens 32 gfp were investigated in their introduction to cattle excrements and subsequent entering the soil, plants of cress (Lepidium sativum L.), and migration through the gastroenteric tract of French snails (Helix pomatia L.). The survival of these bacteria in the excrements and soil was investigated at cyclically changing (day-night, 25–15 °C) and constant (18 °C) temperatures. The cyclically changing temperature adversely affected the survival of E. coli O157:H7 gfp, and P. fluorescens but did not influence S. enterica var. Typhimurium. All the bacteria and, especially, the analogues of enteropathogens showed high survival in the cattle and snail excrements, soil, and on the plants under the gradual decrease in their population. On the cress plants grown in a mixture of cattle excrements and soil, an increase in the number of the introduced bacteria was observed.  相似文献   
48.
The population dynamics of the saprotrophic Pseudomonas fluorescens 32 gfp bacteria and two conventionally pathogenic enterobacteria (Escherichia coli 0157:H7 and Salmonella enterica var. Typhimurium) were investigated in their inoculation at different doses into cattle excreta and their subsequent entering soil and plants and migration through the gastroenteric tract of invertebrates. All the introduced bacteria investigated are shown to be able to overcome ecological barriers as they migrate through the natural substrates and habitats. The introduce microorganisms maintain their high population density even at the lowest initial inoculation dose—105 CFU/g of dry matter. Plants were found to be a favorable substrate for the survival of the bacteria investigated (for enteropathogens, in particular). Enteropathogens are able to pass through the gastroenteric tract of invertebrates. Therefore, these organisms can function as incubators and carriers of enteroinfections in nature.  相似文献   
49.
Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus–peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300–600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75–150 mg C/100 g) to the high (150–300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35–75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2–11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0–20 cm and from 1.0 to 12.4/ha in the layer of 0–50 cm of different soil types.  相似文献   
50.
Eurasian Soil Science - The decomposition and mineralization of various plant residues (oak and aspen leaves, pine needles, small branches and thin roots of trees, aboveground biomass and roots of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号