首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
农学   1篇
  41篇
综合类   7篇
农作物   2篇
畜牧兽医   10篇
植物保护   5篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有66条查询结果,搜索用时 359 毫秒
1.
2.
A healthy soil is often defined as a stable soil system with high levels of biological diversity and activity, internal nutrient cycling, and resilience to disturbance. This implies that microbial fluctuations after a disturbance would dampen more quickly in a healthy than in a chronically damaged and biologically impoverished soil. Soil could be disturbed by various processes, for example addition of a nutrient source, tillage, or drying-rewetting. As a result of any disturbance, the numbers of heterotrophic bacteria and of individual species start to oscillate, both in time and space. The oscillations appear as moving waves along the path of a moving nutrient source such as a root tip. The phase and period for different trophic groups and species of bacteria may be shifted indicating that succession occurs. DGGE, Biolog and FAME analysis of subsequent populations in oscillation have confirmed that there is a cyclic succession in microbial communities. Microbial diversity oscillates in opposite direction from oscillations in microbial populations. In a healthy soil, the amplitudes of these oscillations will be small, but the background levels of microbial diversity and activity are high, so that soil-borne diseases will face more competitors and antagonists. However, soil-borne pathogens and antagonists alike will fluctuate in time and space as a result of growing plant roots and other disturbances, and the periods and phases of the oscillations may vary. As a consequence, biological control by members of a single trophic group or species may never be complete, as pathogens will encounter varying populations of the biocontrol agent on the root surface. A mixture of different trophic groups may provide more complete biological control because peaks of different trophic groups occur at subsequent locations along a root. Alternatively, regular addition of soil organic matter may increase background levels of microbial activity, increase nutrient cycling, lower the concentrations of easily available nutrient sources, increase microbial diversity, and enhance natural disease suppression.  相似文献   
3.
The origin of jets emitted from black holes is not well understood; however, there are two possible energy sources: the accretion disk or the rotating black hole. Magnetohydrodynamic simulations show a well-defined jet that extracts energy from a black hole. If plasma near the black hole is threaded by large-scale magnetic flux, it will rotate with respect to asymptotic infinity, creating large magnetic stresses. These stresses are released as a relativistic jet at the expense of black hole rotational energy. The physics of the jet initiation in the simulations is described by the theory of black hole gravitohydromagnetics.  相似文献   
4.
A combined index of reproductive qualities (CIRQ) is used for evaluating the reproductive productivity of sows of different genotypes, the index V 100 * for evaluating young replacement stock, and the index for evaluating fattening qualities. The best crossing variants are revealed as a result of using the index evaluations: Large White of the Grigoropolis-1 type (LW GT) × Early Maturing Meat of the steppe type (EM-1 ST) × Landrace (L); EM-1 ST × (EM-1 ST × L); and L × (EM-1 ST × L).  相似文献   
5.
In the future, UK summers are likely to be warmer and drier. Modelling differential water redistribution and uptake, we assessed the impact of future drier climates on sugar beet yields. Weather was generated for 1961–1990 (BASE) and predictions based on low‐ and high‐emission scenarios (LO, HI) described in the most recent global climate simulations by the Hadley Centre, UK. Distributions and variability of relative soil moisture deficit (rSMD) and yield gap (drought‐related yield loss, YGdr = 1?actual yield/potential yield), and sugar yield were calculated for different time‐lines using regional weather, soil texture and management inputs. The rSMD is estimated to exceed the senescence threshold with a probability of 75% (2050sLO) to 95% (2080sHI) compared with 65% (BASE). The potential yield loss, YGdr, is likely to increase from 17% (BASE) to 22% (2050sLO) to 35% (2080sHI). However, increasing potential growth rates (CO2 × temperature) cause average sugar yields to rise by between 1.4 and 2 t ha?1 (2050sLO and 2050sHI respectively). Yield variation (CV%) may increase from 15–18% (BASE) to 18–23% (2050s) and 19–25% (2080s). Differences are small between regions but large within regions because of soil variability. In future, sugar yields on sands (8 t ha?1) are likely to increase by little (0.5–1.5 t ha?1), but on loams yields are likely to increase from 11 to 13 t ha?1 (2050sHI) and 15 t ha?1 (2080sHI). Earlier sowing and later harvest are potential tools to compensate for drought‐related losses on sandy soils.  相似文献   
6.
Eurasian Soil Science - The taxonomic composition, abundance, and diversity of bacterial and fungal communities in the rhizosphere loci and bulk mass of the gray forest soil (Eutric Retisol...  相似文献   
7.
Eurasian Soil Science - Quantitative characteristics of microbial communities in southern agrochernozems of the Stavropol region managed with the use of no-till technology and moldboard plowing...  相似文献   
8.
Eurasian Soil Science - The distribution of total organic matter (Corg), particulate organic matter (CPOM), and potentially mineralizable organic matter (C0) in mega- (10–5 and 5–2 mm),...  相似文献   
9.
The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2–1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3–4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44–70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2–1, 0.5–0.25, and <0.25 mm fractions to the total C0 reserve are 14–21%; the contributions of each of the other fractions are 4–12%. The chemically labile and biologically active components of humic substances reflect the quality changes of soil organic matter under agrogenic impacts. A conceptual scheme has been proposed for the subdivision of soil organic matter into the active, slow (intermediate), and passive pools. In the humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6–11, 34–65, and 26–94% of the total Corg, respectively.  相似文献   
10.
The flux rates of carbon dioxide, methane, and nitrous oxide in the soils on autonomous, transitional, transitional-accumulative, and accumulative positions of a catena on the Oka River’s right bank (Moscow oblast) were assessed using the chamber method. The lowest rate of C-CO2 emission (18.8–29.8 mg/m2 per hour) was found for the gray forest soil in the autonomous position, and the highest rate (52.4–66.1 mg/m2 per hour) was found for the alluvial meadow soil of the accumulative landscape. In the summer, the uptake of methane from the atmosphere exceeded its release from the soil at all the points of the catena (9–38 μg/m2 per hour). The highest rate of the C-CH4 uptake was observed for the soil in the transitional position. In the fall, the soils in the autonomous, transitional, and transitional-accumulative positions served as a sink of C-CH4, and the soil of the accumulative position was a source of methane emission. The rate of the N-N2O emission from the catena soils increased when going from the autonomous position to the accumulative one (0.41–11.2 μg/m2 per hour). The spatial variation of the C-CO2, C-CH4, and N-N2O fluxes within the catena was 33, 172, and 138%, respectively. The upper (0- to 10-cm) soil layer made the major contribution to the emission of carbon dioxide. This soil layer was characterized by its C-CH4 uptake, and the emission of methane was typical for the deeper (0- to 20-cm) layer. The layers deeper than 10 and 20 cm emitted more N-N2O than the surface layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号