首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   5篇
林业   29篇
农学   6篇
基础科学   2篇
  56篇
综合类   21篇
农作物   19篇
水产渔业   22篇
畜牧兽医   142篇
园艺   3篇
植物保护   6篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   11篇
  2018年   12篇
  2017年   3篇
  2016年   11篇
  2015年   7篇
  2014年   7篇
  2013年   19篇
  2012年   41篇
  2011年   14篇
  2010年   7篇
  2009年   9篇
  2008年   15篇
  2007年   14篇
  2006年   12篇
  2005年   13篇
  2004年   12篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
  1968年   1篇
  1966年   1篇
  1962年   1篇
  1956年   1篇
  1955年   1篇
  1948年   1篇
  1946年   1篇
  1945年   1篇
排序方式: 共有306条查询结果,搜索用时 390 毫秒
51.
52.
Vertisol soils of central India are heavy in texture, with high clay content and low organic matter. These soils are prone to degradation and the soil loss is due to poor management practices including excessive tillage. Based on a long-term study conducted for improving the quality of these soils, it was found that management practice such as low tillage (LT) + 4 t ha?1 compost + herbicide (Hb) recorded significantly higher organic carbon (OC) (6.22 g kg?1) and available N (188.5 kg ha?1) compared to conventional tillage (CT) + recommended fertilizer (RF) + off-season tillage (OT) + hand weeding (HW) (OC: 4.71 g kg?1, available nitrogen (N) (159.3 kg ha?1). Among the physical soil quality parameters, mean weight diameter (MWD) was significantly higher under LT + 4 t ha?1 straw + Hb (0.59 mm). The practice of LT + 4 t ha?1 straw + HW recorded significantly higher microbial biomass carbon (MBC) (388.8 μg g?1). The order of key indicators and their contribution towards soil quality was as follows: OC (29%) >, MBC (27%) > available zinc (Zn) (22%) > MWD (9%) > available boron (B) (8%), > dehydrogenase activity (DHA) (5%). The order of the best treatment which maintained soil quality index (SQI) values reasonably good (>1.5) was as follows: LT + 4t ha?1 compost + HW (1.65) > LT + 4 t ha?1 compost +Hb (1.60) > LT + 4t ha?1 straw + HW (1.50). Hence, these treatments could be recommended to the farmers for maintaining higher soil quality in Vertisols under soybean system. Correlation studies revealed stronger relationship between key indicators like OC (R2 = 0.627), MBC (R2 = 0.884), available Zn (R2 = 0.739) and DHA (R2 = 0.604) with Relative Soil Quality Index (RSQI). The results of the present study would be highly useful to the researchers, farmers and land managers.  相似文献   
53.
54.
Prolonged exposure to captive conditions has led to the development of a rainbow trout ‘farmed’ phenotype, which is different from that of wild trout. Selection for desirable productive traits in hatcheries has resulted in the development of some morphological traits that are maladaptive in nature. The recent development of organic aquaculture, guided by the well‐being of the fish, could potentially produce a new farmed phenotype that would be more adaptive in nature. In this study, rainbow trout reared in intensive and organic farms were compared by means of shape analysis, to detect patterns of shape variation associated with rearing environment. The results of this study highlight a significant effect of the rearing method on rainbow trout shape: organically reared trout showed a higher body profile, in particular in the head and trunk regions, shorter median fins and a deeper caudal peduncle. A combined effect of density and habitat complexity could have contributed to the observed shape differences: in organic rearing systems, lower densities and steady water could increase territoriality and aggressive interactions, promoting body designs more functional in rapid attacks and escapes.  相似文献   
55.
56.
The present study was conducted to investigate the relationship between waxy allelic forms and amylose in European and US rice germplasm. These allelic forms were defined according to the single-nucleotide polymorphisms (SNP) found in the leader intron 5′ splice site (G → T), exon 6 (A → C) and exon 10 (C → T). The combination of these three SNPs accounted for 89.2% of the variation in apparent amylose content in a pedigree of 85 US rice varieties and 93.8% of the variation among 279 accessions in a European germplasm collection. The allelic forms TAC and TCC were found in low amylose varieties. All varieties with intermediate levels of apparent amylose had the GCC allele. High levels of apparent amylose varieties had either the GAT and GAC allele. The sequence AGTTATA in the intron 1 distinguished the low amylose varieties from the other classes regardless of any other base changes. Intermediate amylose varieties can be distinguished from those with high apparent amylose by changes in either exon 6 or exon 10. However the simplest interpretation of the data is that the tyrosine/serine change in exon 6 is responsible for the lower levels of Granule bound starch synthase (GBSS) protein and thus lower levels of amylose in intermediate vs. high amylose verities.  相似文献   
57.
A polysaccharide (GSP-6B) with a molecular mass of 1.86 × 10? Da was isolated from the fruiting bodies of Ganoderma sinense . Chemical composition analysis, methylation analysis, infrared spectroscopy, and nuclear magnetic resonance spectroscopy were conducted to elucidate its structure. GSP-6B contains a backbone of (1→6)-linked-β-D-glucopyranosyl residues, bearing branches at the O-3 position of every two sugar residues along the backbone. The side chains contain (1→4)-linked-β-D-glucopyranosyl residues, (1→3)-linked-β-D-glucopyranosyl residues, and nonreducing end β-D-glucopyranosyl residues. An in vitro immunomodulating activity assay revealed that GSP-6B could significantly induce the release of IL-1β and TNF-α in human peripheral blood mononuclear cell (PBMC) and showed no toxicity to either PBMC or a human macrophage cell line THP-1. GSP-6B could also activate dendritic cells (DC) by stimulating the secretion of IL-12 and IL-10 from DC.  相似文献   
58.
Rice growth and its resistance to pests had been often constrained by soil‐silicon (Si) availability. The purpose of this study was to assess the potential of biochar soil amendment (BSA) to improve Si availability in paddy soils. A cross‐site field trail with BSA was conducted in six locations with different climatic and crop‐production conditions across S China. Plant‐available Si content before field‐trials establishment and after rice harvest, as well as Si content in rice shoot were determined. Varying with site conditions, plant‐available Si content of soil was observed to increase significantly with BSA in most sites. Significant increase in rice shoot Si was detected in four out of the six sites, which was well correlated to the concurrent increase in soil pH under BSA treatment. This study demonstrates an important role of BSA to improve Si availability and uptake by rice mainly through increasing soil pH of the acid and slightly acid rice soils.  相似文献   
59.
The chemical form and content of available nitrogen (N) in salt marsh substrates varies considerably. On the western coast of Ireland, habitats designated as Ombrogenic Atlantic salt marshes were formed on ombrogenic peat substrate. The peat substrate in these systems has three times more ammonium than substrate from adjacent salt marsh habitats on sand and mud substrate. This study examined the extent to which the high concentration of ammonium in peat salt marsh substrate influences the N‐ assimilating enzyme activity of halophytes and the extent to which N metabolism differs between species. Specifically, this work investigated whether plants from peat salt marshes are more likely to assimilate ammonium than plants from non‐peat substrates. Four halophyte plant species—Armeria maritima, Aster tripolium, Plantago maritime, and Triglochin maritime—were sampled from various saltmarsh habitats including three sites on peat substrate and three on non‐peat substrate, comprising sand, mud and sand/mud. The activities of N‐metabolising enzymes—glutamine synthetase (GS), glutamate synthase, glutamate dehydrogenase (GDH), and nitrate reductase (NR)—were quantified in shoot and root parts. Root GS activity in Armeria maritima and shoot GS activity in Triglochin maritima were positively correlated with increasing soil ammonium levels. Root NR activity in Aster tripolium and shoot NR activity in Plantago maritima were significantly higher in plants grown on non‐peat substrates than peat substrates. The shoot : root GS activity ratio in Triglochin maritima on peat substrate was more than double the ratio on non‐peat substrates. It is concluded that all species tested displayed differences in N‐metabolising activities depending on the chemical form and/or concentration of N in the substrate, while three out of the four species were capable of taking advantage of the high levels of ammonium in peat substrates.  相似文献   
60.
Trees and woody plants can be attacked by many pests and pathogens either individually or as polymicrobial infections. In particular, infections caused by tree-specific bacterial pathogens have become more common during the last decade, causing serious concern for important tree and woody plant species in horticulture, urban environments, and forests. For example, Xylella and Pseudomonas bacteria are causing significant economic and ecological devastation throughout Europe in olive, cherry, and other stone fruits, mainly because of lack of efficient control methods and the emergence of bacterial resistance to traditional antimicrobial compounds such as copper and antibiotics. Hence, there is an urgent need for innovative approaches to tackle bacterial plant diseases. One way to achieve this could be through the application of biological control, which offers a more environmentally friendly and targeted approach for pathogen management. This review will explore recent advances in use of pathogen-specific viruses, bacteriophages (or phages), for the biocontrol of bacterial tree diseases. Phages are an important component of plant microbiomes and are increasingly studied in plant pathogen control due to their highly specific host ranges and ability to selectively kill only the target pathogenic bacteria. However, their use still poses several challenges and limitations, especially in terms of managing the bacterial diseases of long-lived trees. A particular insight will be given into phage research focusing on controlling Pseudomonas syringae pathovars, Erwinia amylovora, Xanthomonas species, Ralstonia solanacearum, and Agrobacterium tumefaciens. Recent milestones, current challenges, and future avenues for phage therapy in the management of tree diseases are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号