首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8100篇
  免费   3577篇
  国内免费   2篇
林业   321篇
农学   469篇
基础科学   13篇
  1633篇
综合类   339篇
农作物   140篇
水产渔业   2621篇
畜牧兽医   4690篇
园艺   67篇
植物保护   1386篇
  2024年   3篇
  2023年   17篇
  2022年   27篇
  2021年   175篇
  2020年   511篇
  2019年   1084篇
  2018年   951篇
  2017年   985篇
  2016年   982篇
  2015年   850篇
  2014年   849篇
  2013年   1031篇
  2012年   594篇
  2011年   634篇
  2010年   672篇
  2009年   301篇
  2008年   358篇
  2007年   178篇
  2006年   246篇
  2005年   205篇
  2004年   197篇
  2003年   201篇
  2002年   194篇
  2001年   78篇
  2000年   115篇
  1999年   21篇
  1998年   16篇
  1997年   25篇
  1996年   8篇
  1995年   20篇
  1994年   14篇
  1993年   14篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   6篇
  1978年   10篇
  1977年   8篇
  1975年   7篇
  1974年   6篇
  1973年   3篇
  1970年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
This study aimed to identify the potential allelopathic indigenous rice (Oryza sativa L. ssp. indica) varieties from Bangladesh using a performance study in a weed‐infested field and to assess the extent of allelopathic interference relative to resource competition in a glasshouse experiment. Six varieties – namely, “Boterswar,” “Goria,” “Biron” and “Kartiksail” as the most allelopathic, “Hashikolmi” as weakly allelopathic and “Holoi” as nonallelopathic – were raised following a nonweed control method. The infestation levels of weed species were calculated using Simpson's Diversity Index (SDI), which ranged from 0.2 to 0.56. However, a significant correlation coefficient (0.87, P < 0.001) was obtained from these field data compared with the root inhibition percentage from the laboratory bioassay, and the “Boterswar” variety was the most allelopathic. The interactions between the allelopathic variety “Boterswar,” weakly allelopathic variety “Hashikolmi” and Echinochloa oryzicola via a target (rice)‐adjacent (E. oryzicola) cogrowth culture were determined in a hydroponic arrangement. The relative competitive intensity (RCI) and the relative neighbor effect (RNE) values showed that the crop–weed interaction was facilitation for “Boterswar” and competition for “Hashikolmi” and E. oryzicola in rice/E. oryzicola cogrowth cultures. The allelopathic effects of “Boterswar” were much higher than the resource competition in rice/E. oryzicola cogrowth cultures. The converse was observed for “Hashikolmi.” Moreover, the mineral content of E. oryzicola was severely affected by “Boterswar”/E. oryzicola cogrowth cultures’ exudate solution. Therefore, the allelopathic potential of “Boterswar” variety might be useful for developing the weed‐suppressing capacity of rice, which will likely have a significant influence on paddy weed control.  相似文献   
102.

Context

Resilience, the ability to recover from disturbance, has risen to the forefront of scientific policy, but is difficult to quantify, particularly in large, forested landscapes subject to disturbances, management, and climate change.

Objectives

Our objective was to determine which spatial drivers will control landscape resilience over the next century, given a range of plausible climate projections across north-central Minnesota.

Methods

Using a simulation modelling approach, we simulated wind disturbance in a 4.3 million ha forested landscape in north-central Minnesota for 100 years under historic climate and five climate change scenarios, combined with four management scenarios: business as usual (BAU), maximizing economic returns (‘EcoGoods’), maximizing carbon storage (‘EcoServices’), and climate change adaption (‘CCAdapt’). To estimate resilience, we examined sites where simulated windstorms removed >70% of the biomass and measured the difference in biomass and species composition after 50 years.

Results

Climate change lowered resilience, though there was wide variation among climate change scenarios. Resilience was explained more by spatial variation in soils than climate. We found that BAU, EcoGoods and EcoServices harvest scenarios were very similar; CCAdapt was the only scenario that demonstrated consistently higher resilience under climate change. Although we expected spatial patterns of resilience to follow ownership patterns, it was contingent upon whether lands were actively managed.

Conclusions

Our results demonstrate that resilience may be lower under climate change and that the effects of climate change could overwhelm current management practices. Only a substantial shift in simulated forest practices was successful in promoting resilience.
  相似文献   
103.
Soil structure forms a key component of soil quality, and its assessment by semi‐quantitative visual soil evaluation (VSE) techniques can help scientists, advisors and farmers make decisions regarding sampling and soil management. VSE techniques require inexpensive equipment and generate immediate results that correlate well with quantitative measurements of physical and biochemical properties, highlighting their potential utility. We reviewed published VSE techniques and found that soils of certain textures present problems and a lack of research into the influence of soil moisture content on VSE criteria. Generally, profile methods evaluate process interactions at specific locations within a field, exploring both intrinsic aspects and anthropogenic impacts. Spade methods focus on anthropogenic characteristics, providing rapid synopses of soil structure over wider areas. Despite a focus on structural form, some methods include criteria related to stability and resiliency. Further work is needed to improve existing methods regarding texture influences, on‐farm sampling procedures and more holistic assessments of soil structure.  相似文献   
104.
Elevated CO2 stimulates crop yields but leads to lower tissue and grain nitrogen concentrations [N], raising concerns about grain quality in cereals. To test whether N fertiliser application above optimum growth requirements can alleviate the decline in tissue [N], wheat was grown in a Free Air CO2 Enrichment facility in a low‐rainfall cropping system on high soil N. Crops were grown with and without addition of 50–60 kg N/ha in 12 growing environments created by supplemental irrigation and two sowing dates over 3 years. Elevated CO2 increased yield and biomass (on average by 25%) and decreased biomass [N] (3%–9%) and grain [N] (5%). Nitrogen uptake was greater (20%) in crops grown under elevated CO2. Additional N supply had no effect on yield and biomass, confirming high soil N. Small increases in [N] with N addition were insufficient to offset declines in grain [N] under elevated CO2. Instead, N application increased the [N] in straw and decreased N harvest index. The results suggest that conventional addition of N does not mitigate grain [N] depression under elevated CO2, and lend support to hypotheses that link decreases in crop [N] with biochemical limitations rather than N supply.  相似文献   
105.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   
106.
107.
This study was conducted to evaluate the influence of seed priming on drought tolerance of pigmented and non‐pigmented rice. Seeds of pigmented (cv. Heug Jinju Byeo) and non‐pigmented (cv. Anjoong) rice were soaked in water (hydropriming) or solution of CaCl2 (osmopriming). Seeds were sown in soil‐filled pots retained at 70 (well‐watered) and 35% (drought) water‐holding capacity. Drought stress caused erratic and poor stand establishment and decreased the growth of both rice types. More decrease in plant height and leaf area under drought stress was noted in pigmented rice, whereas decrease in root length and seedling dry weight, under drought, was more obvious in non‐pigmented rice. Pigmented rice maintained more tissue water and photosynthesis and had more polyphenols, flavonoids and antioxidant activity than non‐pigmented rice. Seed priming was effective in improving stand establishment, growth, polyphenols, flavonoids and antioxidant activity; however, extent of improvement was more in pigmented rice under drought. In conclusion, drought caused erratic germination and suppressed plant growth in both rice types. However, pigmented rice had better drought tolerance owing to uniform emergence, and better physiological and morphological plasticity. Seed priming was quite helpful in improving the performance of both rice types under drought and well‐watered conditions.  相似文献   
108.
New strategies to enhance growth and productivity of food crops in saline soils represent important research priorities. This study has investigated the role of certain priming techniques to induce salt tolerance of bread wheat. Wheat grains were soaked in 0.2 mm sodium nitroprusside as nitric oxide donor (redox priming), diluted sea water (halopriming) and the combination of both (redox halopriming). Grains were also soaked in distilled water (hydropriming); in addition, untreated grains were taken as control. Our results indicated that priming treatments significantly improved all growth traits and increased leaf pigments concentration as compared to the control. Priming treatments markedly enhanced membrane stability index, proline, total soluble sugars and K+ concentration with simultaneous decrease in the concentration of Na+ and malondialdehyde (MDA). Furthermore, yield and yield‐related traits such as plant height, spike length, total number of tillers, 1000‐grain weight, straw and grain yield considerably affected by priming treatments. Moreover, the grain yield of both genotypes was positively affected by redox halopriming treatment. However, the extent of enhancement was more prominent in Gemmiza‐9 (salt sensitive) than that in Sakha‐93 (salt‐tolerant). Overall, this study clearly indicated that redox halopriming treatment is a promising and handy technique to induce salinity tolerance of wheat genotypes.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号