首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   1篇
农学   1篇
  4篇
综合类   1篇
农作物   1篇
畜牧兽医   6篇
植物保护   7篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有20条查询结果,搜索用时 186 毫秒
11.
Parthenium weed (Parthenium hysterophorus L.) is one of the most aggressive invasive weeds, threatening natural ecosystems and agroecosystems in over 30 countries worldwide. Parthenium weed causes losses of crops and pastures, degrading the biodiversity of natural plant communities, causing human and animal health hazards and resulting in serious economic losses to people and their interests in many countries around the globe. Several of its biological and ecological attributes contribute towards its invasiveness. Various management approaches (namely cultural, mechanical, chemical and biological control) have been used to minimise losses caused by this weed, but most of these approaches are ineffective and uneconomical and/or have limitations. Although chemical control using herbicides and biological control utilising exotic insects and pathogens have been found to contribute to the management of the weed, the weed nevertheless remains a significant problem. An integrated management approach is proposed here for the effective management of parthenium weed on a sustainable basis. © 2014 Society of Chemical Industry  相似文献   
12.
Parthenium weed (Parthenium hysterophorus L.; Asteraceae) is an invasive weed species in agro-ecosystems. It causes huge losses to native biodiversity and agricultural productivity. This study was conducted to assess the combined effect of a leaf-feeding beetle, (Zygogramma bicolorata Pallister; Chrysomelidae) and suppressive plant species, bull Mitchell grass (Astrebella squrossa C.E. Hubb.; Poaceae) or butterfly pea (Clitoria ternatea L.; Fabaceae) on parthenium weed under shade house conditions. The suppressive plant species significantly reduced the parthenium weed height (16%), biomass (29%) and seed production (42%), in the absence of Z. bicolorata. However, this suppressive ability was further enhanced in the presence of Z. bicolorata. The combined effect of the suppressive plant species and Z. bicolorata further reduced the parthenium weed height (46%), biomass (66%) and seed production (95%). The combination also had a significant negative effect upon seed fill, decreasing the reproductive output of the current generation. The presence of Z. bicolorata also had positive effect on the biomass (10%) and plant height (11%) of both suppressive species. So, the combined use of suppressive plant species and the biological control agent suppressed parthenium weed more effectively than their sole use. Such integrated approaches should be prioritized for future management of parthenium weed.  相似文献   
13.
Parthenium hysterophorus is a noxious invasive weed of both agricultural and natural ecosystems, spreading aggressively in Nepal. Management of this weed in Nepal has been limited, mainly because of the lack of geo‐referenced data concerning the weed's distribution. We conducted a nationwide survey of P. hysterophorus and its coleopteran biological control agent Zygogramma bicolorata from 2013 to 2016 to determine their spatial distribution. Both were widespread, with the distribution of Z. bicolorata lagging behind the invasion front of P. hysterophorus. The weed was present in 21.2% of the 4838 locations examined, including several isolated satellite populations. The weed was found in the Tarai, Siwalik, Middle Mountains and High Mountains regions, reaching up to 2000 m asl. It has invaded natural and modified ecosystems including all six protected areas in the Tarai and Siwalik regions. Road access appears to be the major pathway for its long‐distance dispersal. Zygogramma bicolorata had spread from the east to the west and was present in 15.4% of the weed occurrence locations, inflicting a low amount of damage. A CLIMEX modelling projection revealed the presence of additional geographic areas in Nepal which are climatically suitable for both P. hysterophorus and Z. bicolorata. Eradication of satellite populations of the weed by physical and chemical measures, and the release of Z. bicolorata into new, but climatically suitable, locations should be prioritised for P. hysterophorus management in Nepal. In conclusion, P. hysterophorus has rapidly become widespread in Nepal and the currently available biological control agent has not been able to prevent further spread of the weed.  相似文献   
14.
Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements.  相似文献   
15.
Parthenium or famine weed (Parthenium hysterophorus L.) is an annual plant originating from the Americas, which is a major invasive alien plant in almost all continents. While the deleterious impacts of the species on agriculture, human and animal health have been well documented, information on the pathways of entry of the species is only occasionally mentioned in the literature. As this invasive alien plant is only recorded as established in Israel and Egypt within the Euro‐Mediterranean region, the European and Mediterranean Plant Protection Organization identified P. hysterophorus as an emerging threat. EPPO therefore performed a Pest Risk Analysis on this species to assess the risk it represents and to consider appropriate management options. The EPPO Pest Risk Analysis main outputs are summarized in this article, indicating the probability of entry of the species via the different pathways within the EPPO region, its probabilities of establishment and spread, and the magnitude of its potential agricultural, environmental and social impacts.  相似文献   
16.
Three C4 grass (Setaria incrassata, Astrebla squarrosa and Bothriochloa decipiens) and one C3 legume (Clitoria ternatea) suppressive fodder species, were re‐evaluated against the growth of the C3 Parthenium hysterophorus under an ambient (390 μmol mol?1) and an elevated atmospheric CO2 concentration (550 μmol mol?1). Under the elevated atmospheric CO2, shoot dry biomass and suppression index (SI) value of the C4 S. incrassata were both reduced by 32% and 0.7 respectively, while those for A. squarrosa were reduced by 23% and 0.3. In contrast and under the same elevated atmospheric CO2 concentration, the shoot dry biomass and SI of the C4 Bdecipiens were increased by 8% and 0.1 respectively, while those for the C3 C. ternatea were increased by 38% and 0.8. Our results suggest that C3 fodder plants along with certain C4 species could be utilised for the effective management of Physterophorus under the future elevated atmospheric CO2 conditions. However, this system needs more fodder species to be investigated. Our results suggest that rising CO2 per se may alter the efficacy of suppressive fodder management of an invasive C3 species, Physterophorus.  相似文献   
17.
Soil salinization is a serious environmental problem worldwide. To explore the comparative effects of soil salinity and sodicity on physiological, biochemical and nutritional quality attributes of four quinoa genotypes (A1, A7, Puno, Vikinga), pot and field experiments were performed on non‐saline soil and two types of salt‐affected soils designated as SS1 (saline) and SS2 (saline‐sodic). The results of both the experiments showed similar reduction pattern in biomass (11%–44%), chlorophyll content (10%–36%), stomatal conductance (18%–32%) and grain yield (30%–47%) of four genotypes on SS2 compared with SS1. Higher sodicity level of SS2 resulted in more Na accumulation (23%–40%) and oxidative damage (12%–35% decrease in membrane stability) leading to an increase in the activities of antioxidant enzymes (SOD, POD, CAT) in all the genotypes. Grain mineral contents (except Na and Mg) were decreased more in SS2 than SS1. Multivariate analysis revealed that grain Na content has negative correlation with all the nutritional quality attributes except Mg and fibre contents. Genotypes A1 and A7 were more salt tolerant with better grain nutritional quality than Puno and Vikinga. It is concluded that soil sodicity is more detrimental than salinity, and quinoa genotypes A1 and A7 are better than Puno and Vikinga for cultivation on saline and saline‐sodic soils.  相似文献   
18.
Journal of Plant Diseases and Protection - Fusarium oxysporum f. sp. capsici (Foc) induces wilt disease in chilli and affects its yield. Implementing microorganisms and plant extracts for plant...  相似文献   
19.
The overreliance on and overuse of fungicides is not only a health hazard but also induces natural resistance in plant pathogens, resulting in an economic burden on agricultural producers and a potential threat to natural systems across the globe. It is therefore necessary to identify natural substitutes of fungicides. This study was designed to evaluate the inhibitory effect of the root exudates of two different garlic cultivars, cv. Gailiang (G064) and Cangshan (G025), against Phytophthora capsici, a pepper fungus. All treatments (T1 to T4, i.e., 25%, 50%, 75% and 100% root exudate concentrations) of garlic cultivar G025 showed lower inhibition effects than cultivar G064. An intervarietal inhibition effect comparison at 100% concentration (T4) exhibited a 69.24% decline in hyphal growth for G064 compared with 49.06% for G025. The mycelial growth measured in the control was found to be significantly greater compared with the garlic treatments. The results of high performance liquid chromatography (HPLC) revealed that G064 possessed a large amount of allicin compared with G025. Scanning and transmission electron microscopy showed that, compared with the controls and hyphae treated with G025, the fungal hyphae treated with G064 exudates were misshaped, fragmented and had a smaller diameter, as well as empty cytoplasmic contents in the cell wall. Thus, the root exudates of the G064 cultivar had a significant fungicidal effect on P. capsici.  相似文献   
20.
【目的】以十字花科蔬菜害虫小菜蛾(Plutella xylostella)为研究对象,筛选参与小菜蛾代谢氯虫苯甲酰胺的主要细胞色素P450解毒基因,为阐明不同抗性水平小菜蛾对氯虫苯甲酰胺的抗性机理提供依据。【方法】利用叶片药膜法测定不同小菜蛾种群3龄幼虫对氯虫苯甲酰的抗性水平,通过转录组测序、insectbase数据库和小菜蛾基因组数据库筛选得到52个细胞色素P450基因。应用MEGA5.10软件对52个细胞色素P450基因进行进化分析,获得与抗药性密切相关的CYP3和CYP4家族P450基因。利用实时荧光定量PCR方法分析目的基因在小菜蛾室内筛选种群(HZY)和田间抗性种群惠州种群(HZ)、连州种群(LZ)、东升种群(DS)、钟落潭种群(ZLT)中的表达量,选用RNA干扰技术,采用注射法,验证在抗性种群中显著上调表达的CYP6BF1V4在小菜蛾抗氯虫苯甲酰胺中的功能。【结果】抗药性测定结果表明,LZ和HZ小菜蛾种群为中等水平抗性,ZLT、DS和HZY小菜蛾种群为高水平抗性。对52个细胞色素P450基因的系统发育树分析发现,小菜蛾拥有10个CYP4家族基因,28个CYP3家族基因,其中2个CYP4家族基因在HZ和HZY种群中的表达量显著高于敏感种群,4个CYP3家族基因表达量与小菜蛾抗性呈正相关,8个基因在中等水平抗性小菜蛾体内的表达量高于在高水平抗性小菜蛾体内的表达量。对田间种群进一步筛选得到6个与小菜蛾抗氯虫苯甲酰胺密切相关,在不同抗性种群中均上调表达的细胞色素P450基因,其中4个为CYP6家族基因(CYP6BF1V4CYP6BF1V3CYP6f1CYP6B6),2个为CYP9家族基因(CYP9G2.1CYP9G2.2),以CYP6BF1V4的表达量最高,其在抗性种群中的表达量是在敏感种群中表达量的3.5—6.3倍。RNA干扰结果显示,沉默CYP6BF1V4能够显著提高小菜蛾对氯虫苯甲酰胺的敏感性。【结论】CYP6BF1V4CYP6BF1V3CYP6f1CYP6B6CYP9G2.1CYP9G2.2可能在小菜蛾体内协同调控多功能氧化酶的表达,从而加快小菜蛾代谢氯虫苯甲酰胺的速度,提高小菜蛾对氯虫苯甲酰胺的抗性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号