首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5586篇
  免费   336篇
林业   1033篇
农学   163篇
基础科学   10篇
  1200篇
综合类   531篇
农作物   144篇
水产渔业   185篇
畜牧兽医   2134篇
园艺   119篇
植物保护   403篇
  2023年   34篇
  2022年   37篇
  2021年   82篇
  2020年   78篇
  2019年   44篇
  2018年   187篇
  2017年   174篇
  2016年   154篇
  2015年   135篇
  2014年   152篇
  2013年   363篇
  2012年   318篇
  2011年   346篇
  2010年   160篇
  2009年   143篇
  2008年   280篇
  2007年   312篇
  2006年   304篇
  2005年   259篇
  2004年   251篇
  2003年   269篇
  2002年   215篇
  2001年   179篇
  2000年   173篇
  1999年   100篇
  1998年   35篇
  1997年   36篇
  1996年   45篇
  1995年   73篇
  1994年   44篇
  1993年   22篇
  1992年   24篇
  1991年   24篇
  1990年   25篇
  1989年   19篇
  1988年   25篇
  1987年   14篇
  1986年   30篇
  1985年   28篇
  1984年   22篇
  1983年   20篇
  1982年   15篇
  1980年   27篇
  1977年   23篇
  1973年   16篇
  1966年   14篇
  1961年   13篇
  1955年   14篇
  1941年   14篇
  1857年   13篇
排序方式: 共有5922条查询结果,搜索用时 31 毫秒
91.
Carbon and nitrogen budgets of nematodes in arable soil   总被引:2,自引:0,他引:2  
Summary The amounts of C and N that pass through the nematode biomass in four cropping systems, barley without and with N fertilization, grass ley and lucerne, has been estimated. The nematodes were sampled at the field site of a Swedish integrated research project Ecology of Arable Land: The Role of Organisms in Nitrogen Cycling. The nematode biomass was lower (200 mg dry weight m–2) in the annual (barley) than in the perennial (grass and lucerne, 350 mg dry weight m–2) crops. For respiration, the nematodes used 4–71 O2m–2 year–1 corresponding to C liberation of 1.3%–2.0% of the carbon input to the soil. A higher relative contribution by bacterial-feeding nematodes to the C and N fluxes and a higher turnover rate of the nematode biomass is an indication of more rapid nutrient circulation in the annual than in the perennial cropping systems.  相似文献   
92.
To prepare composite films from biopolymers with anti-listerial activity and moisture barrier properties, the antimicrobial efficiency of chitosan-hydroxy propyl methyl cellulose (HPMC) films, chitosan-HPMC films associated with lipid, and chitosan-HPMC films chemically modified by cross-linking were evaluated. In addition, the physicochemical properties of composite films were evaluated to determine their potential for food applications. The incorporation of stearic acid into the composite chitosan-HPMC film formulation decreased water sensitivity such as initial solubility in water and water drop angle. Thus, cross-linking of composite chitosan-HPMC, using citric acid as the cross-linking agent, led to a 40% reduction in solubility in water. The water vapor transfer rate of HPMC film, approximately 270 g x m(-2) x day(-1) x atm(-1), was improved by incorporating chitosan and was further reduced 40% by the addition of stearic acid and/or cross-linking. Anti-listerial activity of films was determined on solid medium by a numeration technique. Chitosan-HPMC-based films, with and without stearic acid, inhibited the growth of Listeria monocytogenes completely. On the other hand, a loss of antimicrobial activity after chemical cross-linking modification was observed. FTIR and 13C NMR analyses were then conducted in order to study a potential chemical modification of biopolymers such as a chemical reaction with the amino group of chitosan. To complete the study, the mechanical properties of composite films were determined from tensile strength assays.  相似文献   
93.
Metsulfuron methyl sorption-desorption in field-moist soils   总被引:4,自引:0,他引:4  
Pesticide sorption coefficients (K(d)) are generally obtained using batch slurry methods. As a consequence, the results may not adequately reflect sorption processes in field-moist or unsaturated soil. The objective of this study was to determine sorption of metsulfuron methyl, a weak acid, in field-moist soils. Experiments were performed using low density (i.e., 0.3 g mL(-)(1)) supercritical fluid carbon dioxide (SF-CO(2)) to convert anionic metsulfuron methyl to the molecular species and remove it from the soil water phase only, thus allowing calculation of sorption coefficients (K(d)) at low water contents. K(d) values for sorption of the metsulfuron methyl molecular species on sandy loam, silt loam, and clay loam soil at 11% water content were 120, 180, and 320 mL g(-)(1), respectively. Using neutral species K(d) values, the pK(a) of metsulfuron methyl, and the pH of the soil, we could successfully predict the K(d) values obtained using the batch slurry technique, which typically has a predominance of anionic species in solution during the sorption characterization. This application of supercritical fluid extraction to determine sorption coefficients, combined with sulfonylureas' pK(a) values and the soil pH, will provide an easy method to predict sorption in soil at different pH levels.  相似文献   
94.
Based on recent findings in the literature, we developed a process‐oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co‐action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo‐mineral interactions for OM stabilization in the passive pool is well‐known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site‐ and horizon‐specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo‐mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo‐mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.  相似文献   
95.
The human-specific bacterial pathogen Neisseria meningitidis is a major cause of sepsis and/or meningitis. The pili of N. meningitidis interact with CD46, a human cell-surface protein involved in regulation of complement activation. Transgenic mice expressing human CD46 were susceptible to meningococcal disease, because bacteria crossed the blood-brain barrier in these mice. Development of disease was more efficient with piliated bacteria after intranasal, but not intraperitoneal, challenge of CD46 transgenic mice, suggesting that human CD46 facilitates pilus-dependent interactions at the epithelial mucosa. Hence, the human CD46 transgenic mice model is a potentially useful tool for studying pathogenesis and for vaccine development against meningococcal disease.  相似文献   
96.
In the 1970s unexpected forest damages, called “new type of forest damage” or “forest decline”, were observed in Germany and other European countries. The Federal Republic of Germany and the German Federal States implemented a forest monitoring system in the early 1980s, in order to monitor and assess the forest condition. Due to the growing public awareness of possible adverse effects of air pollution on forests, in 1985 the ICP Forests was launched under the convention on long-range transboundary air pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE). The German experience in forest monitoring was a base for the implementation of the European monitoring system. In 2001 the interdisciplinary case study “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests”, funded by the German Federal Ministry of Education and Research, concentrated on in-depths evaluations of the German data of forest monitoring. The objectives of the study were: (a) a reliable assessment of the vitality and functioning of forest ecosystems, (b) the identification and quantification of factors influencing forest vitality, and (c) the clarification of cause-effect-relationships leading to leaf/needle loss. For these purposes additional data from external sources were acquired: climate and deposition, for selected level I plots tree growth data, as well as data on groundwater quality. The results show that in particular time series analysis (crown condition, tree growth, and tree ring analysis), in combination with climate and deposition are valuable and informative, as well as integrated evaluation of soil, tree nutrition and crown condition data. Methods to combine information from the extensive and the intensive monitoring, and to transfer process information to the large scale should be elaborated in future.
Sabine AugustinEmail:
  相似文献   
97.
Landscape Ecology - Global change pressures (GCPs) imperil species and associated ecosystem functions, but studies investigating interactions of landscape-scale pressures remain scarce. Loss of...  相似文献   
98.
Landscape Ecology - Several case studies investigated the role of ecosystem services in participatory planning processes. However, no systematic study exists that cuts across a large number of...  相似文献   
99.
100.
Vegetation indices are widely used as model inputs and for non‐destructive estimation of biomass and photosynthesis, but there have been few validation studies of the underlying relationships. To test their applicability on temperate fens and the impact of management intensity, we investigated the relationships between normalized difference vegetation index (NDVI), leaf area index (LAI), brown and green above‐ground biomass and photosynthesis potential (PP). Only the linear relationship between NDVI and PP was management independent (R2 = 0·53). LAI to PP was described by a site‐specific and negative logarithmic function (R2 = 0·07–0·68). The hyperbolic relationship of LAI versus NDVI showed a high residual standard error (s.e.) of 1·71–1·84 and differed between extensive and intensive meadows. Biomass and LAI correlated poorly (R2 = 0·30), with high species‐specific variability. Intensive meadows had a higher ratio of LAI to biomass than extensive grasslands. The fraction of green to total biomass versus NDVI showed considerable noise (s.e. = 0·13). These relationships were relatively weak compared with results from other ecosystems. A likely explanation could be the high amount of standing litter, which was unevenly distributed within the vegetation canopy depending on the season and on the timing of cutting events. Our results show there is high uncertainty in the application of the relationships on temperate fen meadows. For reliable estimations, management intensity needs to be taken into account and several direct measurements throughout the year are required for site‐specific correction of the relationships, especially under extensive management. Using NDVI instead of LAI could reduce uncertainty in photosynthesis models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号