首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   7篇
  国内免费   1篇
林业   3篇
农学   2篇
  2篇
综合类   19篇
农作物   1篇
畜牧兽医   56篇
园艺   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   14篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1996年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
11.
A cooperative research study involving 353 litters was conducted at three stations to determine the effects of graded levels of supplemental Cr from chromium tripicolinate (CrPic) on reproductive performance of sows and preweaning performance of their pigs. Primiparous and multiparous sows were fed fortified corn-soybean meal diets with supplemental levels of 0, 200, 600, or 1,000 ppb Cr (as-fed basis). Each station used at least three of the supplemental Cr levels, with two of those levels being 0 and 200 ppb. Station effects were observed for sow gestation weight gain, lactation weight change, lactation feed intake, litter size at birth and weaning, and pig weight at birth and weaning (P = 0.001 to 0.087). Supplemental Cr increased the number of pigs born live per litter (9.49, 9.82, 10.94, and 10.07; quadratic, P = 0.05) and sow lactation weight change (-0.2, 0.8, -4.1, and -3.9 kg; linear, P = 0.01) but decreased individual birth weight of total pigs born (1.61, 1.57, 1.47, and 1.56 kg; quadratic, P = 0.10). Tissues were obtained from a subset of sows from one station after they had completed three parities on the study. The content of Cr in the adrenal gland (16.4, 20.0, 34.0, and 48.4 ppb), kidney (35.8, 56.4, 132.6, and 176.0 ppb), and liver (22.8, 37.4, 87.6, and 92.2 ppb) was increased linearly (P = 0.001 to 0.005) by increasing CrPic supplementation. The results suggest that the supplementation level that maximizes the biological response is above that currently allowed. Additionally, supplementation of Cr at 1,000 ppb (five times currently permitted supplementation levels) was not detrimental to sow performance, even when fed continuously for three parities. There may be merit to continued research to evaluate higher supplementation rates.  相似文献   
12.
In this study a reliable protocol was developed for the establishment of commercial in vitro cultures of Tripterygium wilfordii Hook f.. Juvenile shoots from one-year-old elite plants were used as the source of explants. New axillary shoots were obtained after 30 days of culture on a MS medium supplemented with BAP (2.0 mg·L–1) and NAA (0.1 mg·L–1). The optimal multiplication medium was a modified MS medium supplemented with BAP (1.0 mg·L–1) and NAA (0.1 mg·L–1). This yielded a multiplication rate of 2.4 fo...  相似文献   
13.
基于前期基因芯片结果,RT-PCR获得栽培品种番茄M82和近缘野生种潘那利的一个WRKY基因的全长cDNA序列,分别命名为SlWRKY41和SpWRKY41.序列分析表明,番茄WRKY41基因长为1011bp,编码336个氨基酸.该氨基酸序列含有5'-N端WRKYGQK核心结构域和CX_7CX_(23)HX_1C锌指结构,具有WRKY家族的典型结构特征.同源分析表明,该氨基酸序列与多种植物的WRKY类蛋白具有较高的同源性,并且在普通栽培番茄品种M82和野生种潘那利中,只有5个氨基酸位点的差异.进化树分析表明,WRKY41在番茄中属于第Ⅲ类WRKY蛋白,这类蛋白为植物所特有.表达分析结果表明,WRKY41在普通栽培番茄品种M82和野生种潘那利中,不仅在不同组织器官中的表达存在差异,而且在逆境(干旱和氧化逆境)和一些调节因子(SA、GA、乙烯)的处理下也有不同的表达模式.其在野生种潘那利中能够迅速响应相关调节因子(SA、GA、乙烯),推测WRKY41在番茄抗逆响应过程中具有很重要的作用,Sp WRKY41可能是一个较好的改良普通栽培种抗逆性的候选基因.通过构建超量表达载体,成功地将SpWRKY41转化到番茄M82中,以期深入研究该基因的功能和提高番茄的抗逆性.  相似文献   
14.
Four experiments were conducted to determine the interactive effects of pharmacological amounts of Zn from ZnO and Cu from organic (Cu-AA complex; Cu-AA) or inorganic (CuSO(4)) sources on growth performance of weanling pigs. The Cu was fed for 4 (Exp. 1) or 6 (Exp. 2, 3, and 4) wk after weaning, and Zn was fed for 4 (Exp. 1) or 2 (Exp. 2, 3, and 4) wk after weaning. Treatments were replicated with 7 pens of 5 or 6 pigs per pen (19.0 ± 1.4 d of age and 5.8 ± 0.4 kg of BW, Exp. 1), 12 pens of 21 pigs per pen (about 21 d of age and 5.3 kg of BW, Exp. 2), 5 pens of 4 pigs per pen (20.3 ± 0.5 d of age and 7.0 ± 0.5 kg of BW, Exp. 3), and 16 pens of 21 pigs per pen (about 21 d of age and 5.7 kg of BW, Exp. 4). In Exp. 1 and 2, Cu-AA (0 vs. 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 2 × 2 factorial arrangement. Only Exp. 1 used in-feed antibiotic (165 mg of oxytetracycline and 116 mg of neomycin per kilogram feed), and Exp. 2 was conducted at a commercial farm. In Exp. 3, sources of Cu (none; CuSO(4) at 250 mg/kg of Cu; and Cu-AA at 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 3 × 2 factorial arrangement. In Exp. 4, treatments were no additional Cu, CuSO(4) at 315 mg/kg of Cu, or Cu-AA at 100 mg/kg of Cu to a diet supplemented with 3,000 mg/kg of Zn from ZnO and in-feed antibiotic (55 mg of carbadox per kilogram of feed). In Exp. 1 and 2, both Zn and Cu-AA improved (P < 0.001 to P = 0.03) ADG and ADFI. No interactions were observed, except in wk 1 of Exp. 2, where Zn increased the G:F only in the absence of Cu-AA (Cu-AA × Zn, P = 0.04). A naturally occurring colibacillosis diarrhea outbreak occurred during this experiment. The ZnO addition reduced (P < 0.001) the number of pigs removed and pig-days on antibiotic therapy. In Exp 3, ADFI in wk 2 was improved by Zn and Cu (P < 0.001 and P = 0.09, respectively) with no interactions. In wk 1, G:F was reduced by ZnO only in the absence of Cu (Cu × Zn, P = 0.03). Feeding Zn decreased fecal microbiota diversity in the presence of CuSO(4) but increased it in the presence of Cu-AA (Cu source × Zn, P = 0.06). In Exp. 4, Cu supplementation improved the overall ADG (P = 0.002) and G:F (P < 0.001). The CuSO(4) effect on G:F was greater (P < 0.001) than the Cu-AA effect. Our results indicate that pharmacological amounts of ZnO and Cu (Cu-AA or CuSO(4)) are additive in promoting growth of pigs after weaning.  相似文献   
15.
采用RT-PCR和其他分子生物学方法,以甘蓝自交不亲和系E1和F1柱头cDNA为模板扩增SRKE1和SRKF1基因,以花药cDNA为模板扩增SCRE1和SCRF1基因.经序列比对首次证明E1和F1材料分别为S28和S7单倍型.经三维结构分析,预测SCRE1上C5-C6和C7-C8之间氨基酸序列决定SCRE1的单倍型特异性,SRKE1上TNNSFYSRLKVS序列决定了SRKE1的单倍型特异性,并对两者相对作用的关键氨基酸位点进行了分析.  相似文献   
16.
Burgess  Malcolm  Gregory  Richard  Wilson  Jeremy  Gillings  Simon  Evans  Andy  Chisholm  Kenna  Southern  Adrian  Eaton  Mark 《Landscape Ecology》2019,34(12):2765-2778
Context

Organisations acting to conserve and protect species across large spatial scales prioritise to optimise use of resources. Spatial conservation prioritization tools typically focus on identifying areas containing species groups of interest, with few tools used to identify the best areas for single-species conservation, in particular, to conserve currently widespread but declining species.

Objective

A single-species prioritization framework, based on temporal and spatial patterns of occupancy and abundance, was developed to spatially prioritize conservation action for widespread species by identifying smaller areas to work within to achieve predefined conservation objectives.

Methods

We demonstrate our approach for 29 widespread bird species in the UK, using breeding bird atlas data from two periods to define distribution, relative abundance and change in relative abundance. We selected occupied 10-km squares with abundance trends that matched species conservation objectives relating to maintaining or increasing population size or range, and then identified spatial clusters of squares for each objective using a Getis-Ord-Gi* or near neighbour analysis.

Results

For each species, the framework identified clusters of 20-km squares that enabled us to identify small areas in which species recovery action could be prioritized.

Conclusions

Our approach identified a proportion of species’ ranges to prioritize for species recovery. This approach is a relatively quick process that can be used to inform single-species conservation for any taxa if sufficiently fine-scale occupancy and abundance information is available for two or more time periods. This is a relatively simple first step for planning single-species focussed conservation to help optimise resource use.

  相似文献   
17.
Excess supplemental choline for swine   总被引:1,自引:0,他引:1  
Seven experiments were conducted with 280 crossbred pigs to investigate the effect of excess choline on rate and efficiency of gain of weanling, growing and finishing swine Choline additions were made to a conventional corn-soybean meal diet. Daily gain of weanling pigs was reduced slightly by 6,000 ppm excess choline compared with 0, 500, 1,000, 2,000 or 4,000 ppm excess choline. Excess supplemental choline (2,000 ppm) fed throughout the weanling, growing and finishing (121 to 126 d) phases of growth reduced (P less than .08) daily gain but it did not affect (P greater than .10) feed utilization. The 2,000-ppm choline addition, however, did not affect (P less than .10) pig gain when fed only during the growing and finishing stages of growth (68 to 86 d). Excess choline should be avoided in swine diets if maximum rate of gain is to be achieved.  相似文献   
18.
Six experiments were conducted to validate an Ile-deficient diet and determine the Ile requirement of 80- to 120-kg barrows. Experiment 1 had five replications, and Exp. 2 through 6 had four replications per treatment; all pen replicates had four crossbred barrows each (initial BW were 93, 83, 85, 81, 81, and 88 kg, respectively). All dietary additions were on an as-fed basis. In Exp. 1, pigs were fed a corn-soybean meal diet (C-SBM) or a corn-5% blood cell (BC) diet with or without 0.26% supplemental Ile (C-BC or C-BC+Ile) in a 28-d growth assay. On d 14, pigs receiving the C-BC diet were taken off experiment as a result of a severe decrease in ADFI. Growth performance did not differ for pigs fed C-SBM or C-BC + Ile (P = 0.36) over the 28-d experiment. In Exp. 2, pigs were fed the C-BC diet containing 0.24, 0.26, 0.28, 0.30, or 0.32% true ileal digestible (TD) Ile for 7 d in an attempt to estimate the Ile requirement using plasma urea N (PUN) as the response variable. Because of incremental increases in ADFI as TD Ile increased, PUN could not be used to estimate the Ile requirement. In Exp. 3, pigs were fed the C-BC diet containing 0.28, 0.30, 0.32, 0.34, or 0.36% TD Ile. Daily gain, ADFI, and G:F increased linearly (P < 0.01) as Ile increased in the diet. Even though there were no effects of TD Ile concentration on 10th rib fat depth or LM area, kilograms of lean increased linearly (P < 0.01) as TD Ile level increased. In Exp. 4, pigs were fed a C-SBM diet containing 0.26, 0.31, or 0.36% TD Ile. There were no differences in ADFI or ADG; however, G:F increased linearly (P = 0.02), with the response primarily attributable to the 0.31% Ile diet. In Exp. 5, pigs were fed 0.24, 0.27, 0.30, 0.33, or 0.36% TD Ile in a C-SBM diet. There were no differences in growth performance; however, average backfat, total fat, and percentage of fat increased quadratically (P < 0.10) with the addition of Ile. In Exp. 6, pigs were fed a 0.26% TD Ile C-SBM diet with or without crystalline Leu and Val to simulate the branched-chain AA balance of a C-BC diet. There were no differences in ADFI or ADG, but G:F increased (P = 0.09) when Leu and Val were added. In summary, the Ile deficiency of a C-BC diet can be corrected by the addition of Ile, and because ADFI was affected by Ile addition, the PUN method was not suitable for assessing the Ile requirement. The TD Ile requirement for 80- to 120-kg barrows for maximizing growth performance and kilograms of lean is not < 0.34% in a C-BC diet, but may be as low as 0.24% in a C-SBM diet.  相似文献   
19.
Five experiments were conducted to determine the true ileal digestible Trp (tidTrp) requirement of growing and finishing pigs fed diets (as-fed basis) containing 0.87% (Exp. 3), 0.70% (Exp. 4), 0.61% (Exp. 5), and 0.52% (Exp. 1 and 2) tidLys during the early-grower, late-grower, early-finisher, and late-finisher periods, respectively. Treatments were replicated with three or four replications, with three or four pigs per replicate pen. Treatment differences were considered significant at P = 0.10. Experiment 1 was conducted with 27 pigs (initial and final BW of 78.3 +/- 0.5 and 109.8 +/- 1.9 kg) to validate whether a corn-feather meal (FM) tidTrp-deficient (0.07%) diet, when supplemented with 0.07% crystalline l-Trp, would result in growth performance and carcass traits similar to a conventional corn-soybean meal (C-SBM) diet. Pigs fed the corn-FM diet without Trp supplementation had decreased growth performance and carcass traits, and increased plasma urea N (PUN) concentration. Supplementing the corn-FM diet with Trp resulted in greater ADG and G:F than pigs fed the positive control C-SBM diet. Pigs fed the corn-FM diet had similar carcass traits as pigs fed the C-SBM diet, but loin muscle area was decreased and fat thickness was increased. In Exp. 2, 60 pigs (initial and final BW of 74.6 +/- 0.50 and 104.5 +/- 1.64 kg) were used to estimate the tidTrp requirement of finishing pigs. The levels of tidTrp used in Exp. 2 were 0.06, 0.08, 0.10, 0.12, or 0.14% (as-fed basis). Response variables were growth performance, PUN concentrations, and carcass traits and quality. For Exp. 2, the average of the estimates calculated by broken-line regression was 0.104% tidTrp. In Exp. 3, 4, and 5, barrows (n = 60, 60, or 80, respectively) were allotted to five dietary treatments supplemented with crystalline l-Trp at increments of 0.02%. The basal diets contained 0.13, 0.09, and 0.07% tidTrp (as-fed basis) in Exp. 3, 4, and 5, and initial BW of the pigs in these experiments were 30.9 +/- 0.7, 51.3 +/- 1.1, and 69.4 +/- 3.0 kg, respectively. The response variable was PUN, and the basal diet used in Exp. 3 and 4 contained corn, SBM, and Canadian field peas. The tidTrp requirements were estimated to be 0.167% for pigs weighing 30.9 kg, 0.134% for pigs weighing 51.3 kg, and 0.096% for pigs weighing 69.4 kg. Based on our data and a summary of the cited literature, we suggest the following total Trp and tidTrp requirement estimates (as-fed basis): 30-kg pigs, 0.21 and 0.18%; 50-kg pigs, 0.17 and 0.14%; 70-kg pigs, 0.13 and 0.11%; and in 90-kg pigs, 0.13 and 0.11%.  相似文献   
20.
The optimal ratio of tryptophan (Trp):lysine (Lys) relative to the ratio of threonine (Thr):Lys was studied in 288 crossbred (Cambrough 15 x Canabrid) nursery pigs from 7.1 to 15.6 kg BW. Treatments were arranged in a 3 x 3 factorial with three calculated ratios of true digestible Thr:Lys (0.55, 0.60, or 0.65) in combination with three Trp:Lys ratios (0.145, 0.170, or 0.195). Treatments were replicated with eight pens of four pigs each. The experiment lasted 28 day with Phase II (222.6 g CP and 11.9 g true digestible Lys/kg diet, initially 24 day of age and 7.1 kg BW) and Phase III (196.2 g CP and 10.1 kg true digestible Lys/kg diet, initially 38 day of age and 9.8 kg BW) diets each fed for 14 day. Threonine by Trp interactions were observed for average daily gain during each period, and for daily feed intake during Phase III and overall. Generally, Trp addition linearly increased gain and feed intake at a Thr:Lys ratio of 0.60 and 0.65 but not at a Thr:Lys ratio of 0.55. Gain:feed was increased linearly with increasing levels of Trp during both periods. There were no main effects of Thr in either time period or overall. Overall, optimal performance was obtained in pigs fed the true digestible Trp:Lys ratio of 0.195 at Thr:Lys ratios 0.60 or 0.65. These results indicate that Trp:Lys ratios above 0.195 may be needed to maximize performance in diets containing wheat and barley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号