首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   5篇
林业   3篇
农学   20篇
基础科学   3篇
  30篇
综合类   1篇
农作物   3篇
水产渔业   1篇
畜牧兽医   29篇
园艺   1篇
植物保护   10篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   12篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
排序方式: 共有101条查询结果,搜索用时 31 毫秒
11.
Root growth, grain yield and water uptake by wheat in relation to soil water regime and depth of nitrogen (N) placement were studied in metallic cylinders filled with loamy sand soil. Root-length and -weight densities were greater under irrigated than under unirrigated conditions and they increased with deep placement as compared to surface mixing of fertilizer N. The differences were relatively larger in the deeper than in the upper soil layers and increased during later stages of plant growth. Under non-irrigated conditions, constant water table at 100 cm depth produced maximum root growth in the top 30 cm soil. Water uptake rate increased with increase in root density depending on root age and soil water status. Dry matter accumulation at different stages of plant growth and grain yield varied significantly with moisture regime and depth of N placement. Deep placement of fertilizer N under shallow water table and non-irrigated conditions caused greater root growth, better water utilization and a higher production.  相似文献   
12.
The effect of first irrigation (26, 40 and 54 days after seeding) and the rate of irrigation (5.5, 7.5 and 9.5 cm) applied subsequently at IWEpan ratio of 0.9 on wheat root distribution, water extraction pattern and grain yield was studied on a barrier-free, sandy loam soil. The crop developed a more extensive root system when the first irrigation was applied after 26 days than after 40 and 54 days. With the first irrigation on the 26th day, the crop, receiving subsequent irrigations less frequently but at a heavier rate, developed a deeper root system than the crop receiving frequent, light irrigations. The water extraction pattern corresponded with the root distribution pattern. A relatively small difference in root density in the deeper layers caused a greater difference in soil water content than in the upper layers. Light and frequent irrigations produced maximum grain yields. However, for developing an extensive root system and enhancing water utilization in the subsoil, an early, light irrigation with subsequent irrigations applied less frequently at a relatively heavier rate seems desirable.  相似文献   
13.
14.
Singh  R. K.  Chaudhary  R. S.  Somasundaram  J.  Sinha  N. K.  Mohanty  M.  Hati  K. M.  Rashmi  I.  Patra  A. K.  Chaudhari  S. K.  Lal  Rattan 《Journal of Soils and Sediments》2020,20(2):609-620
Purpose

Accelerated erosion removes fertile top soil along with nutrients through runoff and sediments, eventually affecting crop productivity and land degradation. However, scanty information is available on soil and nutrient losses under different crop covers in a vertisol of Central India. Thus, a field experiment was conducted for 4 years (2010–2013) to study the effect of different crop cover combinations on soil and nutrient losses through runoff in a vertisol.

Materials and methods

Very limited information is available on runoff, soil, and nutrient losses under different vegetative covers in a rainfed vertisol. Thus, the hypothesis of the study was to evaluate if different crop cover combinations would have greater impact on reducing soil and nutrient losses compared to control plots in a vertisol.

This experiment consisted of seven treatment combinations of crop covers namely soybean (Glycine max) (CC1), maize (Zea mays) (CC2), pigeon pea (Cajanus cajan) (CC3), soybean (Glycine max)?+?maize (Zea mays) ??1:1 (CC4), soybean (Glycine ma x))?+?pigeon pea (Cajanus cajan) ?2:1 (CC5), maize (Zea mays)?+?pigeon pea (Cajanus cajan) ??1:1 (CC6), and cultivated fallow (CC7). The plot size was 10?×?5 m with 1% slope, and runoff and soil loss were measured using multi-slot devisor. All treatments were arranged in a randomized block design with three replications.

Results and discussion

Results demonstrated that the runoff and soil loss were significantly (p?<?0.05) higher (289 mm and 3.92 Mg ha?1) under cultivated fallow than those in cropped plots. Among various crop covers, sole pigeon pea (CC3) recorded significantly higher runoff and soil loss (257 mm and 3.16 Mg ha?1) followed by that under sole maize (CC2) (235 mm and 2.85 Mg ha?1) and the intercrops were in the order of maize?+?pigeon pea (211 mm and 2.47 Mg ha?1) followed by soybean?+?maize (202 mm and 2.38 Mg ha?1), and soybean?+?pigeon pea (195 mm and 2.15 Mg ha?1). The lowest runoff and soil loss were recorded under soybean sole crop (194 mm and 2.27 Mg ha?1). The data on nutrient losses indicated that the highest losses of soil organic carbon (SOC) (25.83 kg ha?1), total nitrogen (N), phosphorus (P), and potassium (K) (7.76, 0.96, 32.5 kg ha?1) were recorded in cultivated fallow (CC7) as compared to those from sole and intercrop treatments. However, sole soybean and its intercrops recorded the minimum losses of SOC and total N, P, and K, whereas the maximum losses of nutrients were recorded under pigeon pea (CC3). The system productivity in terms of soybean grain equivalent yield (SGEY) was higher (p?<?0.05) from maize?+?pigeon pea (3358 kg ha?1) followed by that for soybean?+?pigeon pea (2191 kg ha?1) as compared to sole soybean. Therefore, maize?+?pigeon pea (1:1) intercropping is the promising option in reducing runoff, soil-nutrient losses, and enhancing crop productivity in the hot sub-humid eco-region.

Conclusions

Study results highlight the need for maintenance of suitable vegetative cover as of great significance to diffusing the erosive energy of heavy rains and also safe guarding the soil resource from degradation by water erosion in vertisols.

  相似文献   
15.
Photosynthetically derived rhizodeposits are an important source of carbon (C) for microbes in root vicinity and can influence the microbial community dynamics. Pulse labeling of carbon dioxide (13CO2) coupled with stable isotope probing techniques have potential to track recently fixed photosynthate into rhizosphere microbial taxa. Therefore, the present investigation assessed the microbial community change associated with the rhizosphere and bulk soil in Jatropha curcas L. (a biofuel crop) by combining phospholipid fatty acid (13C-PLFA) profiling using a stable isotope 13CO2 labeling approach. The labeling (13C) took place after 45 days of germination, PLFAs were extracted from both soils (rhizosphere and bulk) after 1 and 20 days pulse labeling and analyzed by gas chromatography-isotope ratio mass spectrometry. There was no significant temporal effect on the PLFA profiles in the bulk soil, but significantly increased abundance of Gram positive (i15:0) and Gram negative (16:1ω7c and 16:1ω5c) biomarkers was observed in the rhizosphere soil from day 1 to day 20 after labeling. The Gram negative (16:1ω7c) decreased and fungal (18:2ω6,9c) increased significantly in rhizospheric soil compared to bulk soil after day 1 of labeling. Whereas, after 20 days of labeling, the Gram negative biomarker (16:1ω7c and 18:1ω7c) decreased and Gram positive (a15:0) increased significantly in rhizospheric soil compared to bulk soil. One day following labeling, i15:0, a15:0, i16:0, 16:1ω5c, 16:0, i17:0, a17:0, 18:2ω6,9c, 18:1ω9c, and 18:0 PLFAs were significantly more enriched in δ13C in the rhizosphere than in the bulk soil. Twenty days after labeling, 16:1ω5c (Gram negative) and 18:2ω6,9c (fungal) were significantly more enriched in δ13C in the rhizosphere than in the bulk soil. These results shows the effectives of PLFA coupled using the pulse chase labeling technique to examine the microbial community changes in response to recently fixed photosynthetic C flow in rhizodeposits.  相似文献   
16.
Cyanobacteria - phytopathogenic fungi - tomato plant interactions were evaluated for developing suitable biological options for combating biotic stress (Fusarium wilt) and enhancing plant vigour. Preliminary evaluation was undertaken on the fungicidal and hydrolytic enzyme activity of the cyanobacterial strains (Anabaena variabilis RPAN59, A. laxa RPAN8) under optimized environmental/nutritional conditions, followed by amendment in compost-vermiculite. Such formulations were tested against Fusarium wilt challenged tomato plants, and the Anabaena spp. (RPAN59/8) amended composts significantly reduced mortality in fungi challenged treatments, besides fungal load in soil. Cyanobacteria amended composts also led to an enhancement in soil organic C, nitrogen fixation, besides significant improvement in growth, yield, fruit quality parameters, N, P and Zn content. The tripartite interactions also enhanced the activity of defence and pathogenesis related enzymes in tomato plants. A positive correlation (r?=?0.729 to 0.828) between P content and pathogenesis/defense enzyme activity revealed their role in enhancing the resistance of the plant through improved nutrient uptake. Light and scanning electron microscopy (SEM) revealed cyanobacterial colonization, which positively correlated with reduced fungal populations. The reduced disease severity coupled with improved plant growth/ yields, elicited by cyanobacterial treatments, illustrated the utility of such novel formulations in integrated pest and nutrient management strategies for Fusarium wilt challenged tomato crop.  相似文献   
17.
18.
Journal of Plant Diseases and Protection - Spodoptera frugiperda (J E Smith) (fall armyworm) (Lepidoptera: Noctuidae), is a key pest of maize that has recently entered in India causing damage and...  相似文献   
19.
The distribution and allelic expressivity of hybrid necrosis genes (Ne 1 and Ne 2) were studied in 21 winter (mostly exotic) and 43 spring type elite wheat genotypes, by crossing them with two known testers, C 306 (Ne 1-carrier) and HD 2380 (Ne 2-carrier).Ne 1 gene was present in one north-west Himalayan winter wheat landrace, Shoure Local, but absent in the other winter as well as spring wheats. Ne 2 gene was prevalent to a much lower extent in the exotic winter wheat germplasm (31.57%) as compared to the recently developed Indian and Mexican spring wheat semidwarfs (69.80%). This may suggest that breeders have tried to preclude hybrid necrosis by selecting for non-carrier genotypes in the development of exotic winter wheats in contrast to the situation in spring wheats. Based on the degree of expression of hybrid necrosis genes in the F1 hybrids, the carrier genotypes were characterized with respect to the allelic strength of the hybrid necrosis genes. The 27 non-carrier genotypes of the two ecotypes identified in the present study have a greater potential use in future hybridization programmes so as to overcome the problem of hybrid necrosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
20.

Fungal toxins in feed are leading issue in poultry industry causing a detrimental effect on the performance and health of poultry. The study was carried out to determine the incidence and concentration of the aflatoxins and their major producer Aspergillus flavus in home mix layer poultry feed in respect of seasonal variation throughout the year. A total of (n?= 204) home mix poultry layer feed samples were analyzed for the isolation of fungi. The isolates were initially screened through colony morphology and microscopic examination. However, aflatoxin concentration was determined by ELISA. Revealed results indicated that, the highest percentage of A. flavus was found during the months of June to August 50/54 (92.5%) followed by September to November 43/65 (66.1%), March to May 21/40 (52.5%), and December to February 18/45 (40%). As a whole, the incidence was recorded 132/204 (64.7%). Moreover, of the 132 samples, 41 (31%) were exceeded in respect of aflatoxin contamination from the legal limit (20 μg/kg) imposed by Food Drug Association (FDA). Statistically, the growth of A. flavus and aflatoxin production was found significantly different in respect of seasonal variation. As highest total viable fungal count (9.9?×?104 CFU/g) and aflatoxin level (72.27 μg/kg) were recorded during the months of June to August and lowest in December to February. Consequently, instantaneous essential control measures are demanded regarding appropriate storage and adequate drying in post-harvesting season. Along with surveillance plans and austere regulations for monitoring the aflatoxin contents for the wellbeing of consumers.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号