首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1687篇
  免费   50篇
  国内免费   96篇
林业   434篇
农学   105篇
基础科学   75篇
  234篇
综合类   569篇
农作物   126篇
水产渔业   40篇
畜牧兽医   188篇
园艺   49篇
植物保护   13篇
  2024年   6篇
  2023年   18篇
  2022年   26篇
  2021年   31篇
  2020年   29篇
  2019年   30篇
  2018年   28篇
  2017年   54篇
  2016年   72篇
  2015年   60篇
  2014年   88篇
  2013年   87篇
  2012年   137篇
  2011年   198篇
  2010年   115篇
  2009年   124篇
  2008年   115篇
  2007年   116篇
  2006年   80篇
  2005年   60篇
  2004年   40篇
  2003年   35篇
  2002年   18篇
  2001年   32篇
  2000年   32篇
  1999年   35篇
  1998年   21篇
  1997年   17篇
  1996年   24篇
  1995年   23篇
  1994年   15篇
  1993年   10篇
  1992年   7篇
  1991年   8篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
排序方式: 共有1833条查询结果,搜索用时 312 毫秒
91.
Empirical, statistically based models were used to describe the growth and development of Eucalyptus nitens plantations for a range of site productivities and the standard biomass and pulp silvicultural regime currently applied in Northern Spain. The results obtained, along with data gathered from a network of 68 plots, 48 trees felled for biomass estimations and 73 trees sampled for foliar area estimation were used to parameterize the 3-PG model for this species in Northern Spain. Most parameters associated with allometric relationships and partitioning (i.e. bark and branch fraction, basic density, age modifier and mortality) were derived from local data, and the remaining parameters were obtained from published studies on E. nitens or default values previously used for E. globulus. The parameterized model was validated with data from three trials measured from age 3 years until age 8-14 years, and performed better than the empirical model in terms of total stand under bark volume, mean diameter at breast height, basal area and foliar biomass. The process-based model was then used to forecast changes in plantations subjected to a clearwood regime, initializing the model at age 3 years, considering 3 prunings, 2 thinnings and lengthening the rotation to 18 years. This integrated regime was able to provide biomass for bioenergy, pulp or fibreboard wood and also solid wood, with thinning operations assisting the financial viability, and was a potentially good alternative for productive sites.  相似文献   
92.
Biomass and carbon sequestration rate of a young (four year old) mixed plantation of Dalbergia sissoo Roxb., Acacia catechu Willd., and Albizia lebbeck Benth. growing in Terai region (a level area of superabundant water) of central Himalaya was estimated. The plantation is seed sown in the rainy season of year 2004 and spread over an area of 44 ha. Allometric equations for both above and below ground components were developed for three tree species. The density of trees in the plantation was 1322 trees ha−1 The diameters of trees were below 10 cm. Five diameter classes were defined for D. sissoo and A. catechu and 3 for A. lebbeck. 5 trees were harvested in each diameter class. Individual tree allometry was exercised for developing the allometric equations relating tree component (low and above ground) biomass to d.b.h. Post analysis equations were highly significant (P > 0.001) for each component of all species. In the plantation Holoptelia integrifolia Roxb. (Family Ulmaceae) has been reduced to shrub form because of frost. Only the aboveground biomass of H. integrifolia and other shrubs were estimated by destructive harvesting method. Herbaceous forest floor biomass and leaf litter fall were also estimated. The total forest vegetation biomass was 10.86 Mg ha−1 in 2008 which increased to 19.49 Mg ha−1 in 2009. The forest is sequestering carbon at the rate of 4.32 Mg ha−1 yr−1.  相似文献   
93.
The simulation of forest production until 2100 under different environmental scenarios and current management practices was performed using a process-based model BIOME-BGC previously parameterized for the main Central-European tree species: spruce, pine, beech and oak and adapted to include forest management practices. Climatic scenario HadCM3 used in the simulations was taken from the IPCC database created within the 3rd Assessment Report. It was combined with a scenario of CO2 concentration development and a scenario of N deposition. The control scenario considered no changes of climatic characteristics, CO2 concentration and N deposition. Simulation experiment was performed for the test region - South Bohemia - using a 1 km × 1 km grid. The actual data on the regional forest cover were aggregated for each grid cell in such a way that each cell represented an even-aged single-dominant species stand or non-forested area, and a standard management scenario depending on the stand age and species was applied to each cell. The effect of environmental variables was estimated as the difference of simulated carbon pools and fluxes in 2050 under environmental changes and under control scenario.The model simulation for the period to 2050 with only climate change under constant CO2 concentration and N deposition indicated a small decrease of NPP (median values by species reached −0.9 to −1.7% for different species), NBP (−0.3 to −1.7%) and vegetation carbon (−0.3 to −0.7%), whereas soil C slightly increased. Separate increase of N deposition gave small positive effect on carbon pools (0.8-2.9% for wood C and about 0.5% for soil C) and more expressed effect on carbon fluxes (1.8-4.3% for NPP and 1.0-9.7% for NBP). Separate increase of CO2 concentration lead to 0.6-2.4% increase of wood C pool and 0.1-0.5% increase of soil C. The positive effects of CO2 concentration and N deposition were more pronounced for coniferous than for deciduous stands.Replacement of 0.5% of coniferous plantations every year by natural broadleaved stands evoked 10.5% of increase of wood carbon pool due to higher wood density of beech and oak compared to spruce and pine, but slightly decreased soil and litter carbon pools.  相似文献   
94.
The extensive area of degraded tropical land and the calls to conserve forest biodiversity and sequester carbon to offset climate change demonstrate the need to restore forest in the tropics. Deforested land is sometimes replanted with fast-growing trees; however, the consequences of intensive replanting on biomass accumulation or plant and animal diversity are poorly understood. The purpose of this study was to determine how intensive replanting affected tropical forest regeneration and biomass accumulation over ten years. We studied reforested sites in Kibale National Park, Uganda, that were degraded in the 1970s and replanted with five native tree species in 1995. We identified and measured the size of planted versus naturally regenerating trees, and felled and weighed matched trees outside the park to calculate region-specific allometric equations for above-ground tree biomass. The role of shrubs and grasses in facilitating or hindering the establishment of trees was evaluated by correlating observed estimates of percent cover to tree biomass. We found 39 tree species naturally regenerating in the restored area in addition to the five originally planted species. Biomass was much higher for planted (15,675 kg/ha) than naturally regenerated trees (4560 kg/ha), but naturally regenerating tree regrowth was an important element of the landscape. The establishment of tree seedlings initially appeared to be facilitated by shrubs, primarily Acanthus pubescens and the invasive Lantana camara; however, both are expected to hinder tree recruitment in the long-term. Large and small-seeded tree species were found in the replanted area, indicating that bird and mammal dispersers contributed to natural forest restoration. These results demonstrate that intensive replanting can accelerate the natural accumulation of biomass and biodiversity and facilitate the restoration of tropical forest communities. However, the long-term financial costs and ecological benefits of planting and maintaining reforested areas need to be weighed against other potential restoration strategies.  相似文献   
95.
回归分析法是构建单木生物量模型进而估算群体生物量的基本方法。本文研究了攀枝花市马店河一个麻疯树4年人工林生物量与生产力模型的构建过程,运用相关生长定律分析参数合理性,并筛选了适宜的模型构建参数。首先,用地径、高度、D2H、树冠直径、冠幅、枝下高、树冠垂直投影体积这些灌木生物量测定中经常采用的外部形态指标构建麻疯树单木生物量模型,得到拟合性最好的幂函数、抛物线、对数函数模型。其次,采用树体构型指标,如枝条数量(不同年龄枝级)与分支率(总体分支率、)参数构建单木生物量模型,得到相关性不等的幂函数、抛物线模型。用年龄平均法与直径增量法同时估算了麻疯树单木生产力,分别为Pa=4.93±3.92 kg.a-1,Pd=4.59±3.82 kg.a-1,方差分析差异不明显。经回归,获得单木生产力模型。通过排序,获得对生产力贡献较大的因子,并对筛选的因子进行多元回归,得到Y=∑AiXi(其中Ai为第i个常数,Xi为第i个变量,i为测定变量总个体),提高了估算的精确度。分析表明,地径、冠幅直径、冠幅、冠幅垂直体积都能较为准确的估算单木生物量、生产力,但生殖生物量估算相关系数在0.8以下(0.607〈r2〈0.753),精确度不高,表明生殖自身特性的独特性。  相似文献   
96.
通过盆栽和大田试验研究了水和磷互作对旱作水稻生物量和产量的影响。研究表明:土壤含水量和施磷量对旱作水稻生物量和产量有极显著的影响,且二者的交互作用十分明显,影响程度以籽粒> 茎>根。上壤含水量为饱和持水量的60%时对旱作水稻生物量和产量影响较大,而80%和100%时几乎没有影响。旱作水稻生物量和产量均随施磷量的增加而增加。这说明控制土壤水分为饱和持水量的80%时就能完全满足旱作水稻的生长,但要求获得较高的产量时必须注意磷肥的投入,或者采取一些凋控措施提高土壤磷的利用率。  相似文献   
97.
We assessed the successional development of above- and belowground ecosystem biomass and carbon (C) pools in an age-sequence of four White pine (Pinus strobus L.) plantation stands (2-, 15-, 30-, and 65-years-old) in Southern Ontario, Canada. Biomass and C stocks of above- and belowground live and dead tree biomass, understorey and forest ground vegetation, forest floor C (LFH-layer), and woody debris were determined from plot-level inventories and destructive tree sampling. Small root biomass (<5 mm) and mineral soil C stocks were estimated from soil cores. Aboveground tree biomass became the major ecosystem C pool with increasing age, reaching 0.5, 66, 92, and 176 t ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively. Tree root biomass increased from 0.1 to 10, 18, 38 t ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, contributing considerably to the total ecosystem C in the three older stands. Forest floor C was 0.8, 7.5, 5.4, and 12.1 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, indicating an increase during the first two decades, but no further age-effect during the later growth phase. Mineral soil C was age-independent with 37.2, 33.9, 39.1, and 36.7 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively. Aboveground ecosystem C increased with age from 3 to 40, 52, and 100 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, due to an increase in aboveground tree biomass. Belowground ecosystem C remained similiar in the early decades after establishment with 37, 39, and 39 t C ha−1 in the 2-, 15-, and 30-year-old stands, but increased to 56 t C ha−1 in the 65-year-old stand due to an increase in root biomass. The difference in total ecosystem C between the 2- and 65-year-old stand was 116 t C ha−1. Our results highlight the importance of considering the successional development of forest ecosystem C pools, when estimating C sink potentials over their complete life cycle.  相似文献   
98.
Microbial biomass N dynamics were studied under field and laboratory conditions in soils of high yield (HY) and low yield (LY) areas in an agricultural field. The objective of the study was to determine the size and activity of soil microbial biomass in the soils of the different yield areas and to compare these data obtained under field and laboratory conditions. Soils were amended with 15N labelled mustard (Sinapis alba) residues (both experiments) and labelled nitrate (laboratory only) at 30 μg N g−1 dry soil. Soil microbial biomass (SMB) N, mineral N (Nmin) and total N content was monitored both in the field and in the laboratory. N2O efflux was additionally measured in laboratory treatments. Isotope ratios were determined for SMB in both experiments, for all other parameters only in the laboratory treatments. In the laboratory less amounts of added substrate N were immobilised by the SMB in HY soils compared to LY soils, whereas in the field immobilisation of added N by SMB was higher in HY soils initially and slightly lower after 40 days of incubation. Calculated turnover times in the laboratory nitrate, laboratory mustard and field mustard amendments were 0.18, 0.27 and 0.74 years (HY) and 0.22, 0.61 and 1.01 years (LY), respectively. The turnover times of added substrate N always showed the trend to be faster in HY soils compared to LY soils. A faster turnover of nutrients in the HY soils may involve a better nutrient supply of the plants, which coincides with the higher agricultural yield observed in these areas.  相似文献   
99.
 Fungal and bacterial biomass were determined across a gradient from a forest to grassland in a sub-alpine region in central Taiwan. The respiration-inhibition and ergosterol methods for the evaluation of the microbial biomass were compared. Soil fungal and bacterial biomass both significantly decreased (P<0.05) with the shift of vegetation from forest to grassland. Fungal and bacterial respiration rates (evolved CO2) were, respectively, 89.1 μl CO2 g–1 soil h–1 and 55.1 μl CO2 g–1 soil h–1 in the forest and 36.7 μl CO2 g–1 soil h–1 and 35.7 μl CO2 g–1 soil h–1 in the grassland surface soils (0–10 cm). The fungal ergosterol content in the surface soil decreased from the forest zone (108 μg g–1) to the grassland zone (15.9 μg g–1). A good correlation (R 2=0.90) was exhibited between the soil fungal ergosterol content and soil fungal CO2 production (respiration) for all sampling sites. For the forest and grassland soil profiles, microbial biomass (respiration and ergosterol) declined dramatically with depth, ten- to 100-fold from the surface organic horizon to the deepest mineral horizon. With respect to fungal to bacterial ratios for the surface soil (0–10 cm), the forest zone had a significantly (P<0.05) higher ratio (1.65) than the grassland zone (1.05). However, there was no fungal to bacterial ratio trend from the surface horizon to the deeper mineral horizons of the soil profiles. Received: 30 March 2000  相似文献   
100.
Retention of residue on the soil surface following harvest is an effective method of reducing soil erosion from both wind and water. The pea crop produces small amounts of residue to effectively reduce soil erosion. Severe erosion occurs in pea production areas such as the Palouse Region of the US Pacific Northwest (PNW) when low residue crops such as spring pea or lentil are followed by fall-sown wheat. The current study was conducted to determine the range of total aboveground biomass (TAB), seed yield, and straw (residue) production from the plant identification (PI) accessions that comprise the core collection of Pisum germplasm. In addition, the potential for increasing seed yield and straw production simultaneously was evaluated. Three hundred and ninety PI accessions were screened in the field in 1996 and 1997. The variation for TAB, seed yield and straw production among the PI accessions exceeded that of the controls both years. Seed yield was positively correlated with straw production (r = 0.81, p< 0.01) indicating that seed and straw production can be increased simultaneously through positive selection for both traits. Significant favorable variation is present among accessions in the USDA core collection of Pisum germplasm which could be used to increase both seed yield and total biomass production of adapted breeding lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号