首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   2篇
基础科学   3篇
  2篇
  2023年   2篇
  2022年   2篇
  2020年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
基于部分亲和场的行走奶牛骨架提取模型   总被引:3,自引:0,他引:3  
在奶牛关键点预测的基础上,通过点、线重构奶牛骨架结构,可为奶牛跛行检测、发情行为分析、运动量估测等提供重要参考。本研究基于部分亲和场,以养殖场监控摄像头拍摄的视频为原始数据,使用1 600幅图像训练了奶牛骨架提取模型,实现了奶牛站立、行走状态下关键点信息和部分亲和场信息的预测,并通过最优匹配连接对奶牛骨架结构进行准确提取。为了验证该模型的性能,采用包含干扰因素的100幅单目标奶牛和100幅双目标奶牛图像进行了测试。结果表明,该模型对单目标行走奶牛骨架提取的置信度为78.90%,双目标行走奶牛骨架提取的置信度较单目标下降了10.96个百分点。计算了不同关键点相似性(Object keypoint similarity,OKS)下的模型准确率,当OKS为0.75时,骨架提取准确率为93.40%,召回率为94.20%,说明该模型具有较高的准确率。该方法可以提取视频中奶牛骨架,在无遮挡时具有高置信度和低漏检率,当遮挡严重时置信度有所下降。该模型的单目标和双目标图像帧处理速度分别为3.30、3.20 f/s,基本相同。本研究可为多目标奶牛骨架提取提供参考。  相似文献   
2.
果实目标深度学习识别技术研究进展   总被引:1,自引:0,他引:1  
机器视觉技术是果实目标识别与定位研究的关键。传统的目标识别算法准确率较低、检测速度较慢,难以满足实际生产的需求。近年来,深度学习方法在果实目标识别与定位任务中表现出了优良的性能。本文从数据集制备与果实目标识别模型两方面进行综述,总结了数据集制备相关的有监督、半监督和无监督3种方法的特点,按照深度学习算法的发展历程,归纳了基于深度学习的果实目标检测和分割技术的常用方法及其实际应用,轻量化模型的研究进展及其应用情况,基于深度学习的果实目标识别技术面临的问题和挑战。最后指出基于深度学习的果实目标识别方法未来发展趋势为:通过弱监督学习来降低模型对数据标签的依赖性,提高轻量化模型的检测速度以实现果实目标的实时准确检测。  相似文献   
3.
融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别   总被引:2,自引:2,他引:0  
及时、准确地监测奶牛发情行为是现代化奶牛养殖的必然要求。针对人工监测奶牛发情不及时、效率低等问题,该研究提出了一种融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别方法。在保证模型检测精度的基础上,基于通道剪枝算法,对包括CSPDarknet53主干特征提取网络等在内的模块进行了修剪,以期压缩模型结构与参数量并提高检测速度。为了验证算法的有效性,在2239幅奶牛爬跨行为数据集上进行测试,并与Faster R-CNN、SSD、YOLOX-Nano和YOLOv5-Nano模型进行了对比。试验结果表明,剪枝后模型均值平均精度(mean Average Precision, mAP)为97.70%,参数量(Params)为0.72 M,浮点计算量(Floating Point operations, FLOPs)为0.68 G,检测速度为50.26 帧/s,与原始模型YOLOv5-Nano相比,剪枝后模型mAP不变的情况下,Params和FLOPs分别减少了59.32和49.63个百分点,检测速度提高了33.71个百分点,表明该剪枝操作可有效提升模型性能。与Faster R-CNN、SSD、YOLOX-Nano模型相比,该研究模型的mAP在与之相近的基础上,参数量分别减少了135.97、22.89和0.18 M,FLOPs分别减少了153.69、86.73和0.14 G,检测速度分别提高了36.04、13.22和23.02 帧/s。此外,对模型在不同光照、不同遮挡、多尺度目标等复杂环境以及新环境下的检测结果表明,夜间环境下mAP为99.50%,轻度、中度、重度3种遮挡情况下平均mAP为93.53%,中等尺寸目标和小目标情况下平均mAP为98.77%,泛化性试验中奶牛爬跨行为检出率为84.62%,误检率为7.69%。综上,该模型具有轻量化、高精度、实时性、鲁棒性强、泛化性高等优点,可为复杂养殖环境、全天候条件下奶牛发情行为的准确、实时监测提供借鉴。  相似文献   
4.
基于YOLO v7-ECA模型的苹果幼果检测   总被引:1,自引:0,他引:1  
为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention, ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型的3条重参数化路径中插入ECA机制,可在不降低通道维数的前提下实现相邻通道局部跨通道交互,有效强调苹果幼果重要信息、抑制冗余无用特征,提高模型效率。采集自然环境下苹果幼果图像2 557幅作为训练样本、547幅作为验证样本、550幅作为测试样本,输入模型进行训练测试。结果表明,YOLO v7-ECA网络模型准确率为97.2%、召回率为93.6%、平均精度均值(Mean average precision, mAP)为98.2%、F1值为95.37%。与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比,其mAP分别提高15.5、4.6、1.6、1.8、3.0、1.8个百分点,准确率分别提高49.7、0.9、18.5、1.2、0.9、1.0个百分点,...  相似文献   
5.
基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用   总被引:5,自引:5,他引:0  
疏花是苹果栽培的重要管理措施,机械疏花是目前最具有发展潜力的疏花方式,花朵的高效检测是疏花机器人高效作业的重要保障。该研究基于机器视觉与深度学习技术,提出了一种基于YOLOv5s深度学习的苹果花朵检测方法,在对田间拍摄得到的苹果花朵图像标注后,将其送入微调的YOLOv5s目标检测网络进行苹果花朵的检测。经测试,模型的精确率为87.70%,召回率为0.94,均值平均精度(mean Average Precision, mAP)为97.20%,模型大小为14.09 MB,检测速度为60.17 帧/s,与YOLOv4、SSD和Faster-RCNN模型相比,召回率分别提高了0.07、0.15、0.07,mAP分别提高了8.15、9.75和9.68个百分点,模型大小减小了94.23%、84.54%、86.97%,检测速度提升了126.71%、32.30%、311.28%。同时,该研究对不同天气、颜色和光照情况下的苹果花朵进行检测,结果表明,该模型对晴天、多云、阴天、小雨天气下苹果花朵的检测精确率分别为86.20%、87.00%、87.90%、86.80%,召回率分别为0.93、0.94、0.94、0.94,mAP分别为97.50%、97.30%、96.80%、97.60%。该模型检测白色、粉色、玫红色和红色花朵的精确率分别为84.70%、91.70%、89.40%、86.90%,召回率分别为0.93、0.94、0.93、0.93,mAP分别为96.40%、97.70%、96.50%、97.90%。该模型检测顺光和逆光条件下苹果花朵的精确率分别为88.20%、86.40%,召回率分别为0.94、0.93,mAP分别为97.40%、97.10%。结果表明YOLOv5s可以准确快速地实现苹果花朵的检测,模型具有较高的鲁棒性,且模型较小,更有利于模型的迁移应用,可为疏花器械的发展提供一定的技术支持。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号