首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
农学   3篇
  10篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
A hydroponic experiment was carried out to study effects of chromium (Cr) stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes differing in Cr accumulation. The results showed that Ca, Mg, Fe, and Zn ions were mainly located in cell walls and vacuoles in roots. However, large amounts of metal ions were transferred from the vacuole to the nucleus and to other functional organelles in shoots. Chromium concentrations in the nutrient solution of 50 μM and above significantly decreased Ca concentrations in the chloroplast/trophoplast, the nucleus, and in mitochondria. It further increased Mg concentrations in the nucleus and in mitochondria, as well as Zn and Fe concentrations in the chloroplast/trophoplast. These Cr‐induced changes in ion concentrations were associated with a significant reduction in plant biomass. It is suggested that Cr stress interferes with the functions of mineral nutrients in rice plants, thus causing a serious inhibition of plant growth. The chemical forms of the four nutrients were determined by successive extraction. Except for Ca, which was mainly chelated with insoluble phosphate and oxalic acid, Mg, Zn, and Fe were extractable by 80% ethanol, d‐H2O, and 1μM NaCl. The results indicated that these low–molecular weight compounds, such as organic acids and amino acids, may play an important role in deposition and translocation of Mg, Zn, and Fe in the xylem system of rice plants.  相似文献   
2.
Cereal grains such as wheat, rice, and maize are widely consumed as a staple food worldwide. Lead (Pb) is one of the non-essential trace elements and its toxicity in crops especially cereals is a widespread problem. The present review highlighted Pb toxicity in cereal and management strategies to reduce its uptake in plants. Lead toxicity reduced the cereal growth, photosynthesis, nutritional value, yield, and grain quality. The response of cereals to excess varies with plant species, levels of Pb in soil, and growth conditions. Reducing Pb bioavailability in the soil is a viable approach due to its non-degradability either by microbes, chemicals, or other means. Cultivation of low Pb-accumulating cultivars may reduce the risk of Pb toxicity in plants and humans via the food chain. Use of plant growth regulators, microbes, organic, and inorganic amendments might be promising techniques for further decreasing Pb contents in shoot and grains. Soil amendments along with selecting low Pb-accumulating cultivars might be a feasible approach to get cereal grains with low Pb concentrations. Furthermore, most of the studies have been conducted under controlled conditions either in hydroponic or pots and less is known about the effects of Pb management approaches under ambient field conditions.  相似文献   
3.
The subcellular distribution and chemical forms of different heavy metals in rice are correlated with their bio‐toxicity. An experiment was conducted to investigate the subcellular distribution and chemical forms of chromium (Cr) in two rice genotypes (Oryza sativa L. cv. Xiushui 113 and cv. Dan K5) differing in Cr accumulation, to understand the mechanisms of Cr toxicity and resistance in rice plants. The results show that Cr in the roots of rice plants exposed to Cr stress was mainly localized in cell walls, whereas Cr in leaves and stems was mainly present in both cell walls and vacuoles, suggesting that both compartments act as important protective barriers against Cr toxicity in rice plants. Although Cr ions in all plant tissues exist predominantly in the forms extracted by 80% ethanol and distilled water, the amount of Cr in the chemical forms extracted by 2% HAc, 0.6 M HCl, and in residues was significantly increased under the highest Cr level (100 μM Cr) compared to the plants grown under lower Cr levels. These results indicate that excess Cr accumulated in rice plants under Cr stress is bound to undissolved or low‐bioavailable compounds, such as undissolved phosphate and oxalate, being beneficial for rice plants to alleviate Cr toxicity. In addition, under the highest Cr level (100 μM), Dan K5 had a higher percentage of Cr in the chemical forms extracted by 2% HAc, 0.6 M HCl, and in residues compared to Xiushui 113 in both stems and leaves, indicating that more Cr ions in shoots of Dan K5 were bound to undissolved or low‐bioavailable compounds, in comparison with those of Xiushui 113. It is evident that the low bioavailability of Cr in the shoots of Dan K5 is related to a high Cr accumulation.  相似文献   
4.
In recent decades, ambient gaseous pollution has increased due to anthropogenic activities worldwide. The studies to evaluate the adverse effects of ambient pollutants on commonly grown food crops are still limited, especially in Asian countries like Pakistan. The present study was conducted to measure the ambient pollutants in different sites of Faisalabad and their impact on growth and yield of wheat, mung bean and peas. Plants were grown in pots and placed at three sites named as control (Wire house of Government College University, Faisalabad), low pollution (LP) (Farm Area of Ayub Agricultural Research Institute) and high pollution (HP) (GT Chowk, Faisalabad) sites. Results showed that ambient ozone (O3) concentration was highest at HP site followed by LP site and was below AOT40 in control site. Ambient pollutants caused foliar injury in crops and decreased plant height, leaf area, biomass and grain yield. Pollutants caused a reduction in photosynthetic pigments, stomatal conductance and net photosynthetic rate and grain protein contents in all three crops. In conclusion, the ambient O3 level was highest at HP site, this current O3 level and other pollutants decreased the growth and yield of important food crops.  相似文献   
5.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   
6.
The effect of chromium (Cr) on the uptake, distribution and accumulation of nine nutrient elements was studied in two rice genotypes, Xiushui 113 and Dan K5. The effect on elemental concentrations and accumulations varied with Cr level, nutrient element, genotype and plant part. Maximum nutrient accumulation occurred at 10 μM Cr, while the minimum occurred at 100 μM Cr, indicating best plant growth at the 10 μM level. It may be assumed that low Cr level enhance plant growth. The correlation between the concentrations of Cr and nine elements differed among plant parts, but Cr accumulation was significantly and negatively correlated with the accumulation of each element, suggesting that increasing Cr level may create nutrient deficiencies or imbalance in rice.  相似文献   
7.
Legume plants are an essential component of sustainable farming systems. Phosphorus (P) deficiency is a significant constraint for legume production, especially in nutrient-poor soils of arid and semi-arid regions. In the present study, we conducted a pot experiment to evaluate the effects of a phosphorus-mobilizing plant-growth promoting rhizobacterial strain Bacillus cereus GS6, either alone or combined with phosphate-enriched compost (PEC) on the symbiotic (nodulation-N2 fixation) performance of soybean (Glycine max (L.) Merr.) on an Aridisol. The PEC was produced by composting food waste with addition of single super phosphate. The bacterial strain B. cereus GS6 showed considerable potential for P solubilization and mobilization by releasing carboxylates in insoluble P (rock phosphate)-enriched medium. Inoculation of B. cereus GS6 in combination with PEC application significantly improved nodulation and nodule N2 fixation efficiency. Compared to the control (without B. cereus GS6 and PEC), the combined application of B. cereus GS6 with PEC resulted in significantly higher accumulation of nitrogen (N), P, and potassium (K) in grain, shoot, and nodule. The N:P and P:K ratios in nodules were significantly altered by the application of PEC and B. cereus GS6, which reflected the important roles of P and K in symbiotic performance of soybean. The combined application of PEC and B. cereus GS6 also significantly increased the soil dehydrogenase and phosphomonoesterase activities, as well as the soil available N, P, and K contents. Significant positive relationships were found between soil organic carbon (C) content, dehydrogenase and phosphomonoesterase activities, and available N, P, and K contents. This study suggests that inoculation of P-mobilizing rhizobacteria, such as B. cereus GS6, in combination with PEC application might enhance legume productivity by improving nodulation and nodule N2 fixation efficiency.  相似文献   
8.
Chromium contamination in soil has become a severe threat to crop production and food safety. The experiment was conducted using a rice DH population to detect the QTLs associated with Cr tolerance. Seventeen putative QTLs associated with growth traits included three additive loci and fourteen epistatic loci. These loci were distributed on 11 rice chromosomes, and their contribution to the phenotypic variation ranged from 2.44 to 10.08%. Two QTLs located at the similar genetic region on chromosome ten were associated with shoot Cr concentration and translocation from roots to shoots, respectively; and they accounted for 11.65 and 11.22% of the phenotypic variation. In addition, six QTLs related to Zn concentration and translocation was found on chromosomes 1, 2, 4, 5, 7 and 12. Meanwhile epistatic effect existed in the two additive QTLs of qRZC1 and qRZC7. Most of QTLs controlling Zn concentration had small genotypic variance and qSRZ4 related to Zn translocation showed growth condition-dependent expression.  相似文献   
9.
Identification of Cr-tolerant lines in a rice DH population was conducted based on the modified weighted function analysis. The significant difference was found between the two parents and among DH population lines, with lines 117, 101 and parent ZYQ8 showing the high Cr tolerance, lines 41 and 49 showing Cr sensitivity. A dramatic difference also existed in Cr accumulation of plant tissues, with lines 19, 18 and 1, 5 having the minimum and maximum shoot Cr accumulation, respectively, and line 19, parent JX17 and lines 1, 56, ZYQ8 having the minimum and maximum root Cr accumulation, respectively. There was a significant difference in shoot/root ratio of Cr accumulation among the population, with line 18 and parent ZYQ8 ranking the tops and lines 109, 71, 19, parent JX17 ranking the bottoms. Zn uptake and accumulation was reduced when the plants were exposed to Cr stress. In addition, three QTLs were detected, which are, respectively, associated with Cr accumulation in shoot and root, and ratio of shoot to root.  相似文献   
10.
The present study investigated the influence of seed priming with silver nanoparticles (Ag NPs), 0, 2, 5 and 10 mM, on growth and biochemical parameters of wheat (Triticum aestivum L.) under salt stress. As expected, 150 mM of NaCl decreased the shoot fresh and dry weights and chlorophyll contents and increased the catalase (CAT) and peroxidase (POD) activities. Salinity enhanced the concentration of proline, soluble sugars, malondialdehyde and hydrogen peroxide. Seed priming with Ag NPs increased the shoot fresh and dry weight of normal and salt-stressed plants. Lower concentration of Ag NPs decreased the total soluble sugars and proline contents, while the higher Ag NPs levels increased these contents compared to the control. The combined application of Ag NPs and salt stress increased the soluble sugars and proline contents, while it decreased CAT activity and increased POD activity compared to the respective Ag NPs treatments alone. Overall, our results demonstrated that Ag NPs enhanced the salt tolerance in wheat, but the long-term response of Ag NPs under salt stress needs further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号