首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  1篇
畜牧兽医   3篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal.  相似文献   
2.

Purpose

Acid sulfate soils (ASS) are common in wetlands and can pose an environmental threat when they dry because oxidation of pyrite may cause strong acidification. Addition of organic matter can stimulate sulfate reduction during wet periods and minimize acidification during dry periods. However, the effect of the organic amendment may depend on its composition.

Materials and methods

Three wetland acid sulfate (sulfuric, hypersulfidic, and hyposulfidic) soils collected from different depth in one profile were used. The soils, unamended or amended with 10 g C kg?1 as glucose, wheat straw, pea straw, or Phragmites litter, were incubated for 18 weeks under flooded conditions (“wet period”) followed by 10 weeks during which the soils were maintained at 100 % of maximum water-holding capacity (“dry period”).

Results and discussion

During the wet period, the pH decreased in the control and with glucose to pH 3–4, but increased or was maintained in residue-amended soils (pH at the end of the wet period about 7). In the dry period, the pH of the control and glucose-amended soils remained low, whereas the pH in residue-amended soils decreased. However, at end of the dry period, the pH was higher in residue-amended soils than in the control or glucose-amended soils, particularly with pea straw (C/N 50).

Conclusions

Amendment of acid sulfate soils with plant residues (particularly those with low to moderate C/N ratio) can stimulate pH increase during flooding and reduce acidification under oxidizing conditions.
  相似文献   
3.
Anaerobic digestion is considered as a promising method to manage animal waste with antibiotic‐resistant bacteria. Current research was conducted to investigate the survival of multidrug‐resistant bacteria (MDRB) resistant to three groups of antibiotics: (i) cefazolin, neomycin, vancomycin, kanamycin (group 1); (ii) penicillin, oxytetracycline, ampicillin, streptomycin (group 2); and (iii) cefazolin, neomycin, vancomycin, kanamycin, penicillin, oxytetracycline, ampicillin, streptomycin (group 3), in anaerobic digestion of dairy manure and co‐digestion of dairy manure and waste milk at 37°C and 55°C for 22 days, respectively. The population densities of three groups of MDRB on peptone, tryptone, yeast and glucose agar plates incubated at 30°C for 7 days before and after digestion showed 100% destruction in both digestates at thermophilic temperature. Overall reduction of more than 90% of three groups of MDRB was observed in mesophilic digestion with no significant differences (P > 0.05) between manure and milk mixture. Co‐digestion of dairy manure and waste milk always produced significantly (P < 0.05) higher total gas and methane gas than digestion of manure alone at both temperatures. Gas production in each case was significantly (P < 0.05) higher in thermophilic digestion than in mesophilic digestion. The results demonstrate that thermophilic co‐digestion of dairy manure and waste milk offers more benefits in terms of the environment and economy.  相似文献   
4.
The paper deals with the hygienic advantages of sanitation to treat dairy manure in full‐scale biogas plants. The slurry samples were collected from two thermophilic biogas plants (55°C) and two mesophilic biogas plants (38°C) in Hokkaido Japan. A detectable number of Coli‐aerogenes group and Enterococcus in the slurries after anaerobic digestion (AD) could not be found in either thermophilic biogas plants. However, in both mesophilic biogas plants the viable numbers of Coli‐aerogenes group and Enterococcus were detected in the slurries even after anaerobic digestion. The mean decimation reduction time (T90) values of the Coli‐aerogenes group and Enterococcus in the slurries during mesophilic digestion were 13.3 days and 16.7 days, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号