首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
农学   1篇
  1篇
水产渔业   1篇
  2023年   1篇
  2022年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 296 毫秒
1
1.
准确量化土地覆被变化对蒸散发的影响是深刻理解全球变化背景下的水资源响应机理的重要前提。该研究基于土地覆被产品MCD12Q1、蒸散发产品MOD16及涡动相关等数据,通过构建剔除气候变化的动态分析方法,量化了2001-2020年间澜湄流域热带地区土地覆被变化对蒸散发耗水量的动态影响。结果表明:1)MCD12Q1与MOD16在该流域的精度较高,其中MCD12Q1的总体精度为82.3%,MOD16在8 d以及月尺度上的RMSE仅略大于1 mm/d;2)2001-2020年研究区植被整体退化明显,其中森林转变为灌木和灌木转变为农田约占流域变化面积的61.2%;3)2001-2020年期间主要土地覆被变化导致区域蒸散发耗水量减少约278.87亿m3,主要土地覆被变化区气候差异导致蒸散发耗水量增加190.96 亿m3。总体上,澜湄流热带地区植被整体呈现出退化的趋势,主要表现为森林转变为灌木和灌木转变为农田。该地区土地覆被变化区域也使得其近20年内蒸散发耗水量减少,改变了土地覆被变化区域水资源循环过程。以上研究结果可为澜湄流域热带地区水资源安全提供有效监测,对地区土水资源合理配置提供重要的科学参考依据。  相似文献   
2.
Yellow head virus (YHV) is a viral pathogen of shrimp that has caused high economic loss in the Thai shrimp farming industry, and the RNA interference mechanism has potential as a virus control strategy, as previous studies have shown that injection of virus specific double‐stranded RNA (dsRNA) can inhibit viral replication in shrimp. However, to date, complete inhibition viral replication has not been achieved. This study sought to determine whether cationic liposomes mixed with an antiviral dsRNA (YHV‐Pro‐dsRNA) were able to enhance protection against YHV. The results showed that injection of a YHV‐Pro‐dsRNA/cationic liposome complex markedly increased protection against YHV as compared with naked YHV‐Pro‐dsRNA, suggesting that cationic liposomes enhance the uptake of protective dsRNA into shrimp cells.  相似文献   
3.
Maize production in Thailand is increasingly suffering from drought periods along the cropping season. This creates the need for rapid and accurate methods to detect crop water stress to prevent yield loss. The study was, therefore, conducted to improve the efficacy of thermal imaging for assessing maize water stress and yield prediction. The experiment was carried out under controlled and field conditions in Phitsanulok, Thailand. Five treatments were applied, including (T1) fully irrigated treatment with 100% of crop water requirement (CWR) as control; (T2) early stress with 50% of CWR from 20 days after sowing (DAS) until anthesis and subsequent rewatering; (T3) sustained deficit at 50% of CWR from 20 DAS until harvest; (T4) late stress with 100% of CWR until anthesis and 50% of CWR after anthesis until harvest; (T5) late stress with 100% of CWR until anthesis and no irrigation after anthesis. Canopy temperature (FLIR), crop growth and soil moisture were measured at 5-day-intervals. Under controlled conditions, early water stress significantly reduced maize growth and yield. Water deficit after anthesis had no significant effect. A new combination of wet/dry sponge type reference surfaces was used for the determination of the Crop Water Stress Index (CWSI). There was a strong relationship between CWSI and stomatal conductance (R² = 0.90), with a CWSI of 0.35 being correlated to a 64%-yield loss. Assessing CWSI at 55 DAS, that is, at tasseling, under greenhouse conditions corresponded best to the final maize yield. This linear regression model validated well in both maize lowland (R² = 0.94) and maize upland fields (R² = 0.97) under the prevailing variety, soil and climate conditions. The results demonstrate that, using improved standardized references and data acquisition protocols, thermal imaging CWSI monitoring according to critical phenological stages enables yield prediction under drought stress.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号