首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  14篇
综合类   1篇
畜牧兽医   5篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2016年   1篇
  2014年   2篇
  2010年   2篇
  2009年   1篇
  2004年   1篇
  1979年   1篇
  1976年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有20条查询结果,搜索用时 618 毫秒
1.
Elemental analysis of water-soluble humic substances extracted from three sod-podzolic soils was carried out. Data on elemental composition were compared to those of humic and fulvic acids extracted from the same soils.  相似文献   
2.
Eurasian Soil Science - Application of monoammonium phosphate has been demonstrated to re-immobilize glyphosate sorbed by soil under model laboratory experiment conditions. This effect was most...  相似文献   
3.

Purpose

The purpose of the present study is to evaluate slow-release nitrogen capabilities of soil amendments obtained by modification of humic materials from peat and lignite with alkoxyorganosilanes carrying different amine substituents.

Materials and methods

The humates from lignite and peat were modified using (3-aminopropyltriethoxy)-silane (APTES) and (1-aminohexamethylenene, 6-aminomethylene)-triethoxysilane (AHATES). The obtained derivatives were characterized using elemental analysis and Fourier transform infrared spectroscopy. Nitrogen release in the form of ammonia or nitrate was evaluated using dissolution tests under sterile aqueous conditions as well as long-term soil experiments. Ammonium and nitrate were determined using ion-selective electrodes. Activity index (AI) was calculated from the dissolution tests. For soil trials, arable Retisol was sampled from 0- to 5-cm layer in Yaroslavl region (Russia). The soil experiments were conducted over 78 days using (NH4)2SO4 as an activator of nitrification and 3-amino-1,2,4-triazole as an inhibitor of autotrophic nitrifying bacteria.

Results and discussion

Modification of lignite and peat humates leads to an increase in nitrogen content up to 2 and 4.3 %, respectively, in case of APTES, and up to 3 and 6 %, respectively, in case of AHATES. All humic derivatives gradually released N upon dissolution in water over 6 days up to 51 % of the total N. The AI values ranged from 4 to 13 %. Amendment of soil with the modified humic materials induced an increase in nitrate content resulting from nitrification of released ammonia by soil microflora. This was confirmed by aminotriasole experiments. The nitrogen release occurred slowly: over the first week of incubation, it did not exceed 36–69 % of the total N content. The higher release rate of ammonium nitrogen was observed for CHS-AHATES versus CHS-APTES derivative, whereas no difference was seen between the two peat derivatives, which showed release rate on the level of CHS-AHATES derivative. Positive effect of all modified humic materials lasted over 78 days.

Conclusions

Modification of lignite and peat humates with two aminoorganosilanes carrying one and two nitrogen atoms in the amine substituent brought about twofold to threefold enrichment of the parent humic materials with nitrogen, which was capable of slow release upon incubation in soils. It was released in the form of ammonia and transformed to nitrates by autotrophic nitrifying soil microflora. There was no clear relationship established between structure of amine substituent of organosilane and slow-release properties of the corresponding humic derivatives. The conclusion was met that principal application of aminoorganosilane derivatives of humic substances (HS) is soil structuring, whereas nitrogen-fertilizing capabilities might be considered as beneficial added-value feature of these humic products.
  相似文献   
4.

Purpose

Humic substances (HS) being natural polyelectrolyte macromolecules with complex and disordered molecular structures are a key component of the terrestrial ecosystem. They have remarkable influence on environmental behavior of iron, the essential nutrient for plants. They might be considered as environmental friendly iron deficiency correctors free of synthetic iron (III) chelates disadvantages. The main goal of this study was to obtain water-soluble iron-rich humic compounds (IRHCs) and to evaluate their efficiency as chlorosis correctors.

Materials and methods

A facile preparation technique of IRHCs based on low-cost and available parent material was developed. The iron-containing precursor (ferrous sulfate) was added dropwisely into alkaline potassium humate solution under vigorous stirring and pH-control. A detailed characterization both of organic and inorganic parts of the compounds was provided, the iron species identification was carried out jointly by EXAFS and Mössbauer spectroscopy. Bioassay experiments were performed using cucumber Cucumis sativus L. as target plants. Plants were grown in modified Hoagland nutrient solution, prepared on deionized water and containing iron in the form of IRHCs. Total iron content in dry plants measured by spectrophotometry after oxidative digestion and the chlorophyll a content determined after acetone extraction from fresh plant were used as parameters illustrating plants functional status under iron deficiency condition.

Results and discussion

The high solubility (up to130 g/l) and iron content (about 11 wt%) of the IRHCs obtained allow considering them to be perspective for practical applications. A set of analytical methods has shown that the main iron species in IRHCs are finely dispersed iron (III) oxide and hydroxide nanoparticles. An application of the precursor solution acidification allows to obtain compounds containing a significant part of total iron (up to 30 %) in the form of partly disordered iron (II–III) hydroxysulphate green rust GR(SO4 2?). Bioavailability of iron from IRHCs was demonstrated using bioassay in cucumber plants grown up on hydroponics under iron deficiency conditions.

Conclusions

The application of iron oxides chemistry for humic substance containing solution was proved to be an effective approach to synthesis of IRHCs. Using bioassay on cucumber plants C. sativus L. under iron deficiency conditions, the efficiency of compounds obtained as chlorosis correctors was demonstrated. Application of water-soluble IRHCs led to significant increase of chlorophyll a content (up to 415 % of the blank) and iron content in plants (up to 364 % of the blank) grown up on hydroponics.  相似文献   
5.
The alteration of organic matter from three sod-podzolic soils in the course of the extraction of water-soluble humic substances was studied by means of size-exclusion chromatography using a combined UV-DOC detector. A comparison of water-soluble humic substances with humic and fulvic acids extracted from the same soils was carried out.  相似文献   
6.
7.
8.
Two humic preparations of different origins have been compared as washing agents for oil-contaminated soils and peat under model experimental conditions using a sample from the plow horizon of soddypodzolic soil artificially contaminated with oil or diesel fuel and a sample of high-moor peat contaminated with crude oil because of a spill occurred 15 years ago. Soil and peat were washed by shaking with solutions of the humic preparations Gumat Sakhalinskii and Lignogumat in a 1: 10 (m/v) ratio. Control samples were washed with distilled water. Washing with a synthetic surfactant (sodium dodecyl sulfate) was also added to the experimental design. After washing, soil and peat samples were air-dried and used for the determination of the total content of petroleum hydrocarbons; the characterization of their hydrocarbon composition; and the assessment of hydrophobicity from the contact angle and the efficiency of colonization by oil-destructing microorganisms Rhodococcus sp. and Candida sp., which are components of the preparation Bioros recommended for oil contaminations. It has been shown that the extraction efficiency of petroleum hydrocarbons by humic preparations did not differ from the extraction efficiency by water and was less than that by sodium dodecyl sulfate in all cases. No appreciable changes in the contact angles of soil and peat have been observed at the use of water and humic preparations as washing agents, while the contact angle decreased to less than 90o after washing with sodium dodecyl sulfate, which indicated the hydrophobicity of the surface of substrate particles. It has been found that humic preparations favor the colonization of soil and peat by oil-destructing microorganisms Rhodococcus sp. and Candida sp. Based on the obtained results, humic preparations have been recommended for further study as preparations favoring the ability of oil-destructing microorganisms to colonize oil-contaminated substrates.  相似文献   
9.

Purpose

Humic substances (HS) play important functions in the environment by radical scavenging in biogeochemical redox reactions, thus influencing behavior of pollutants and preventing damage to cell membranes; this is due to antioxidant properties of HS. Previous studies focused primarily on assessing endpoint antioxidant capacity (AOC) of HS. Our work aimed to estimate long-term kinetics of the antioxidant capacities of humic and humic-like substances under different pH in relation to their specific structural features.

Materials and methods

The 10-h kinetic profiles of four standard HS and two fungi-produced humic-like substances (HLS) were established with Trolox equivalent antioxidant capacity (TEAC) approach using the ABTS decolorization assay. Three pH levels (3.75, 4.25, and 6.80) and a broad range of humic material concentrations (0.5–10 mg L?1) were examined. The data were divided into intervals and fit using exponential functions to evaluate the endpoint AOCs as well as rate constants for the reaction of humic materials with the ABTS radical cation. To further explore the nature of the antioxidant activities of humic materials, the physicochemical features and antioxidant activities of humic compounds were subjected to correlation analysis.

Results and discussion

Our results demonstrated that during the first 40 min, the determined AOCs did not exceed 50 % of the endpoint AOCs for studies of humic materials, indicating that short-term measures of the AOCs of humic materials provide artificially low values due to the presence of slow-acting antioxidant compounds. Due to the instability of ABTS?+ at neutral and alkaline pH values, only the fast antioxidant moieties of humic materials can be assessed with ABTS decolorization approach under these conditions. Our results show that at acidic pH, the antioxidant activity of HLS is mainly related to the presence of nitrogen-containing groups rather than phenols. However, for HS, both nitrogen-containing compounds and phenolic compounds should be considered.

Conclusions

To obtain clearer information concerning the AOC of humic materials, kinetic profiles should first be established, and then endpoint measurements should be taken at a time when the reaction has reached, or at least neared, the endpoint.
  相似文献   
10.
Humic acids (HA) are natural organic compounds that are important components of organic matter. The accumulation, distribution, and fate of tritium‐labeled HA prepared from coal were analyzed using wheat (Triticum aestivum L.) seedlings. There was a period of rapid accumulation of HA followed by a slower one in the period from 1 to 24 h. There was a significant decrease in HA accumulation at low temperature, indicating that the slower rate of HA accumulation represented a membrane‐mediated process. HA distribution in plant tissues was analyzed using autoradiography. In all cases, HA concentration was considerably higher in the roots than in the shoots. Detailed examination of autoradiograms showed that there was preferential accumulation of HA in the apices of roots and shoots of wheat seedlings. Lipid fractions were extracted from seedlings and analyzed with thin layer chromatography and gas chromatography–mass spectrometry. These analyses revealed that labeled HA were present in the neutral lipid fraction consisting mainly of alkanes and alkenes, which are usually found in plant waxes, associated with the cuticle and suberized tissues. Based on these data, it is suggested that HA‐derived hydrocarbons may be used in wax biosynthesis. This role could explain the mitigating activity of humic substances under stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号