首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  1篇
综合类   8篇
农作物   1篇
水产渔业   4篇
畜牧兽医   1篇
园艺   1篇
植物保护   2篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
  2006年   1篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1988年   1篇
  1981年   1篇
  1977年   2篇
排序方式: 共有18条查询结果,搜索用时 171 毫秒
1.
While nitrogen and carbon stable isotope values can reflect ecological segregation, prey choice and spatial distribution in seabirds, the interpretation of bulk stable isotope values is frequently hampered by a lack of isotopic baseline data. In this study, we used compound-specific isotope analyses of amino acids (CSIA-AA) to overcome this constraint and to study interspecific differences, seasonal and historical changes in trophic positions of five seabird species, three penguins and two petrels, from a sub-Antarctic seabird community. CSIA-AA allowed comparing trophic positions of seabirds with temperate and polar distributions. Gentoo and Magellanic penguins had the highest trophic positions during the breeding season (3.7 and 3.9), but decreased these (2.9 and 3.3) during the feed-up for moult. Intra-specific differences were also detected in Thin-billed prions, where carbon isotope values clearly separated individuals with polar and temperate distributions, both in the breeding and interbreeding periods. Thin-billed prions that foraged in polar waters had lower trophic positions (3.2) than conspecifics foraging in temperate waters (3.8). We further investigated historical changes by comparing museum samples with samples collected recently. Our pilot study suggests that Rockhopper penguins, Magellanic penguins and Thin-billed prions with temperate non-breeding distributions had retained their trophic levels over a 90–100 year period, while Gentoo penguins and Thin-billed prions with polar non-breeding distributions had decreased trophic levels compared to historical samples. In contrast, Wilson’s storm-petrels had slightly increased trophic levels compared to samples taken in 1924–1930. We applied compound-specific stable isotope analyses across a range of contexts, from intra-specific comparisons between stages of the breeding cycle to inter-specific seabird community analysis that would not have been possible using bulk stable isotope analyses alone due to differences in isotopic baselines.  相似文献   
2.
Ecological effects of climate fluctuations   总被引:3,自引:0,他引:3  
Climate influences a variety of ecological processes. These effects operate through local weather parameters such as temperature, wind, rain, snow, and ocean currents, as well as interactions among these. In the temperate zone, local variations in weather are often coupled over large geographic areas through the transient behavior of atmospheric planetary-scale waves. These variations drive temporally and spatially averaged exchanges of heat, momentum, and water vapor that ultimately determine growth, recruitment, and migration patterns. Recently, there have been several studies of the impact of large-scale climatic forcing on ecological systems. We review how two of the best-known climate phenomena-the North Atlantic Oscillation and the El Ni?o-Southern Oscillation-affect ecological patterns and processes in both marine and terrestrial systems.  相似文献   
3.
Oba  Gufu  Post  Eric  Syvertsen  P.O.  Stenseth  N.C. 《Landscape Ecology》2000,15(6):535-546
Progressive growth of bush cover in dry savannahs is responsible for declines in range conditions. In southern Ethiopia, the Booran pastoralists assisted our understanding of spatial patterns of bush cover and range conditions in 54 landscape patch types grouped into six landscape units within an area of 30000 km2. The size of landscape patches sampled was 625 m2. We assessed the relationships between bush cover, grass cover and bare soil and grazing pressure and soil erosion and changes in range condition. Externally, political conflicts and internally, break down of land use, and official bans on the use of fire promoted bush cover and the decline in range conditions. Bush cover was negatively correlated with grass cover, and positively correlated with bare soil. Grass cover was negatively correlated with bare soil and grazing pressure in most landscape patch types. Grazing pressure was not significantly correlated with bush cover or bare soil, while soil erosion was directly related to bare soil. Soil erosion was absent in 64% of the landscape patch types, and seemingly not a threat to the rangelands. The relationship between bush cover, grass cover, bare soil and soil erosion is complex and related to climate, landscape geology, and patterns of land use. Main threats to range conditions are bush climax, loss of grass cover and unpalatable forbs. Currently, >70% of the landscape patch types are in poor to fair range conditions. Decline in range conditions, unless reversed, will jeopardise the pastoral production system in southern Ethiopia.  相似文献   
4.
In Kazakhstan and elsewhere in central Asia, the bacterium Yersinia pestis circulates in natural populations of gerbils, which are the source of human cases of bubonic plague. Our analysis of field data collected between 1955 and 1996 shows that plague invades, fades out, and reinvades in response to fluctuations in the abundance of its main reservoir host, the great gerbil (Rhombomys opimus). This is a rare empirical example of the two types of abundance thresholds for infectious disease-invasion and persistence- operating in a single wildlife population. We parameterized predictive models that should reduce the costs of plague surveillance in central Asia and thereby encourage its continuance.  相似文献   
5.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   
6.
Fish stock productivity, and thereby sensitivity to harvesting, depends on physical (e.g. ocean climate) and biological (e.g. prey availability, competition and predation) processes in the ecosystem. The combined impacts of such ecosystem processes and fisheries have lead to stock collapses across the world. While traditional fisheries management focuses on harvest rates and stock biomass, incorporating the impacts of such ecosystem processes are one of the main pillars of the ecosystem approach to fisheries management (EAFM). Although EAFM has been formally adopted widely since the 1990s, little is currently known to what extent ecosystem drivers of fish stock productivity are actually implemented in fisheries management. Based on worldwide review of more than 1200 marine fish stocks, we found that such ecosystem drivers were implemented in the tactical management of only 24 stocks. Most of these cases were in the North Atlantic and north‐east Pacific, where the scientific support is strong. However, the diversity of ecosystem drivers implemented, and in the approaches taken, suggests that implementation is largely a bottom‐up process driven by a few dedicated experts. Our results demonstrate that tactical fisheries management is still predominantly single‐species oriented taking little account of ecosystem processes, implicitly ignoring that fish stock production is dependent on the physical and biological conditions of the ecosystem. Thus, while the ecosystem approach is highlighted in policy, key aspects of it tend yet not to be implemented in actual fisheries management.  相似文献   
7.
Assessment of open‐ocean ecosystems relies on understanding ecosystem dynamics, and development of end‐to‐end ecosystem models represents an approach that addresses these challenges. These models incorporate the population structure and dynamics of marine organisms at all trophic levels. Satellite remote sensing of ocean colour and direct at‐sea measurements provide information on the lower trophic levels of the models, and fisheries studies provide information on top predator species. However, these models suffer from a lack of observations for the so‐called mid‐trophic levels, which are poorly sampled by conventional methods. This restricts further development, and we argue that acoustic observations from a range of platforms (e.g. buoys, moorings) can be linked to the ecosystem models to provide much‐needed information on these trophic levels. To achieve this, the models need to be tailored to incorporate the available acoustic data, and the link from acoustic backscatter to biologically relevant variables (biomass, carbon, etc.) needs attention. Methods to progress this issue are proposed, including the development of observation models and focal areas for ground truthing. To ensure full use of the potential of acoustic techniques, we argue that a systematic and long‐term strategy incorporating the following elements is required: development of metadata standards and automated data analysis, inclusion of acoustic sensors in large‐scale observatory programmes, improvement of observation‐model links, and efficient sampling strategies. Finally, these elements should be tied together in an observation‐modelling framework, coordinated by international organizations, to improve our understanding and quantification of open‐ocean ecosystem dynamics.  相似文献   
8.
The basic hypothesis underlying a population dynamics model for the field vole (Microtus agrestis [L.]) in central Scandinavia is described and discussed. The hypothesis is that most aspects of population dynamics of the field vole may be understood by analyzing the nutritional (energy and matter) balance of individual animals and their differential allocation of available nutrients. Digested nutrients are assumed to be utilized for maintenance cost, M; growth, A S; reproduction, R; and dispersion behaviour (including dispersal), D. The simulation model whose main ideas are described verbally is being developed at present. The model is intended to simulate density, age structure, reproductive activity of different categories of the population and spatial distribution; grazing impact apportioned among the most important potential food species (or group); interaction with sympatric rodents, their predators and parasites. Special emphasis is placed on the spatial heterogeneity of the landscape. The population dynamics model is of the Monte Carlo type and considers the realization of a series of events by calculating average probabilities and “drawing” random numbers. The model simulates individual animals in a large heterogeneous area. Qualitative predictions based on our basic hypothesis are discussed and compared with available field information.  相似文献   
9.
Mass mortality events are ubiquitous in nature and can be caused by, for example, diseases, extreme weather and human perturbations such as contamination. Despite being prevalent and rising globally, how mass mortality in early life causes population-level effects such as reduced total population biomass, is not fully explored. In particular for fish, mass mortality affecting early life may be dampened by compensatory density-dependent processes. However, due to large variations in year-class strength, potentially caused by density-independent variability in survival, the impact at the population level may be high in certain years. We quantify population-level impacts at two levels of mass mortality (50% and 99% additional mortality) during early life across 40 fish species using age-structured population dynamics models. The findings from these species-specific models are further supported by an analysis of detailed stock-specific models for three of the species. We find that population impacts are highly variable between years and species. Short-lived species that exhibit a low degree of compensatory density dependence and high interannual variation in survival experience the strongest impacts at the population level. These quantitative and general relationships allow predicting the range of potential impacts of mass mortality events on species based on their life history. This is critical considering that the frequency and severity of mass mortality events are increasing worldwide.  相似文献   
10.
Several bird species have advanced the timing of their spring migration in response to recent climate change. European short-distance migrants, wintering in temperate areas, have been assumed to be more affected by change in the European climate than long-distance migrants wintering in the tropics. However, we show that long-distance migrants have advanced their spring arrival in Scandinavia more than short-distance migrants. By analyzing a long-term data set from southern Italy, we show that long-distance migrants also pass through the Mediterranean region earlier. We argue that this may reflect a climate-driven evolutionary change in the timing of spring migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号