首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   1篇
  国内免费   1篇
林业   12篇
农学   6篇
基础科学   1篇
  10篇
综合类   6篇
农作物   10篇
水产渔业   15篇
畜牧兽医   8篇
园艺   2篇
植物保护   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   10篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1990年   2篇
  1989年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有75条查询结果,搜索用时 187 毫秒
1.
 We evaluated the protective effects of floor cover against soil erosion in three types of forest located on steep slopes under a humid climate: 22- and 34-year-old Chamaecyparis obtusa (hinoki), 34-year-old Cryptomeria japonica (sugi), and 62-year-old Pinus densiflora (red pine) stands. We measured sediment transport rates (sediment mass passing through one meter of contour width per millimeter of rainfall), using sediment traps, before and after removing floor cover. Raindrop splash erosion was dominant in the experimental stands. Floor cover percentage (FCP) during the preremoval stage varied from 50% to 100% among the four stands, and sediment transport rates ranged from 0.0079 to 1.7 g m−1 mm−1. The rates increased to 1.5–5.6 g m−1 mm−1 immediately after removing floor cover, and remained high throughout the experiment. The presence of physical cover near the ground has a crucial effect on sediment transport on forested slopes. The protective effect ratio (the ratio of the sediment transport rate in a control plot to that in the removal plot) in a young hinoki stand, in which the FCP decreased markedly, was 0.3 at most, which is close to the rate for bare ground. The protective effect ratio in the red pine stand was ≤0.003. We concluded that the protective effect of floor cover in undisturbed forests in Japan differs by over two orders of magnitude, based on comparisons with previous studies. Received: March 11, 2002 / Accepted: August 16, 2002 Present address: Department of Forest Site Environment, Forestry and Forest Products Research Institute, Ibaraki 305-8687 Japan Tel. +81-298-73-3211; Fax +81-298-74-3720 e-mail: miura@affrc.go.jp Present address: Department of Forest Site Environment, Forestry and Forest Products Research Institute, Ibaraki 305-8687 Japan Tel. +81-298-73-3211; Fax +81-298-74-3720 e-mail: miura@affrc.go.jp Acknowledgments This study was supported by the Research Council of the Ministry of Agriculture, Forestry, and Fisheries, of Japan. We thank H. Ujihara, S. Ujihara, and M. Ogasawara in Otoyo, Kochi, who provided the experimental stands used in this study. We also thank K. Hirai, S. Kuramoto, E. Kodani, and the rest of the staff at the Shikoku Research Center, Forestry and Forest Products Research Institute, for their help in conducting the experiments. Correspondence to:S. Miura  相似文献   
2.
Atmospheric lead and cadmium deposition in bulk precipitation and throughfall was investigated at four forests in the Kanto district, Japan, to assess the impact of human activities on the environmental health of forests. Annual lead and cadmium depositions in bulk precipitation ranged from 8.9 to 25.7 g ha−1 year−1 and from 0.77 to 1.30 g ha−1 year−1, respectively. Lead and cadmium deposition increased in the summer at every forest due to large amounts of rainfall. At one of the forests, the depositions were also high in the winter due to heavy snowfall. These depositions were similar to recent depositions observed at other rural and urban sites in Japan and several forests in Europe and North America after 1990. These results indicate that although anthropogenic lead and cadmium are deposited at these rates over wide areas, depositions are still higher than in remote areas.  相似文献   
3.
Poor compatibility was found between exploded wood fiber strand (WFS) and cement due to the excessive presence of water-soluble degraded polysaccharides in extractives of exploded WFS obtained from weathered wood waste treated by the water-vapor explosion process (WVEP). This study presents some comparative results from a continuing investigation on the compressive strengths of exploded WFS–cement mixtures. Based on results previously obtained with the hydration test, the relation between hydration behavior and compressive strength of the mixture was explored. In addition, the effect of the curing age on compressive strength development of the mixture with selected additive chemicals was examined. The results supported the results of early studies with hydration tests indicating that adding MgCl2 to the mixtures of exploded WFS mixed with quick-curing cement or ordinary Portland cement and a composite of MgCl2 + CaO added to the mixture of exploded WFS and furnace-slag cement effectively improved the hydration behaviors; it greatly enhanced the compressive strengths of mixtures as well. Compressive strengths were strongly correlated to maximum hydration temperatures (Tmax) of wood–cement mixtures influenced by the cement type, wood wastes (treated or not with WVEP), additive chemicals, and their content levels. The results also indicated that adding selected chemicals had no significant effect on compressive strength among the mixtures of exploded WFS mixed, respectively, with three types of cement at a curing age of 180 days. X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to identify the hydration products and to probe the element distribution of the mixture in the wood–cement interface zone from a fractured surface.Part of this report was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   
4.
5.
Nitrogen fixation during litter decomposition was studied for 34 months using litterbags containing newly fallen litter of coniferous species Cryptomeria japonica and Pinus densiflora and that of deciduous species Quercus serrata. Litterbags were set in contact with the forest floor in a deciduous broad-leaved forest near the top of a slope and in a C. japonica stand at the middle of the slope at a watershed in eastern Japan. Nitrogen-fixing activity, estimated by acetylene reduction after 16 and 19 months of incubation, was 62.65–3.86 nmoles C2H4 h−1 g−1 DW in Cryptomeria litter, but only 1.07–0.09 in Pinus and 0.72–0.04 in Quercus. The rate of N increase in decomposing litter was highest in Cryptomeria. Fungal biomass in decomposing litter, estimated by ergosterol content, increased during the initial 16 months of incubation in Cryptomeria and Quercus, and during the initial 19 months of incubation in Pinus. The litter decomposition rate was highest in Cryptomeria among the three species, due to increased N content and fungal biomass in Cryptomeria litter. Thus, N increase in decomposing Cryptomeria litter affects the subsequent N dynamics and decomposition pattern.  相似文献   
6.
7.
8.
Dietary fish oil intake improves muscle atrophy in several atrophy models however the effect on denervation‐induced muscle atrophy is not clear. Thus, the aim of this study was to investigate the effects of dietary fish oil intake on muscle atrophy and the expression of muscle atrophy markers induced by sciatic nerve denervation in mice. We performed histological and quantitative mRNA expression analysis of muscle atrophy markers in mice fed with fish oil with sciatic nerve denervation. Histological analysis indicated that dietary fish oil intake slightly prevented the decrease of muscle fiber diameter induced by denervation treatment. In addition, dietary fish oil intake suppressed the MuRF1 (tripartite motif‐containing 63) expression up‐regulated by denervation treatment, and this was due to decreased tumor necrosis factor‐alpha (TNF‐α) production in skeletal muscle. We concluded that dietary fish oil intake suppressed MuRF1 expression by decreasing TNF‐α production during muscle atrophy induced by sciatic nerve denervation in mice.  相似文献   
9.
To determine the actual status of the recruiting glass eel stock of Anguilla japonica, we conducted a continuous monthly monitoring program for 2?years between November 2009 and October 2011 at the Sagami River estuary, Japan. A total of 114 and 372 A. japonica glass eels were observed in the 2009?C2010 and 2010?C2011 seasons, respectively. Recruitment patterns were the same in both years, starting in early winter (December in 2009 and November in 2010), increasing slightly until March, decreasing in April, but attaining the largest peak in June, after which no glass eels were observed during August?COctober. The Japanese eel has been known to spawn mainly in the summer, and glass eels recruit to their freshwater growth habitats during the winter to early spring. Our results clearly demonstrate an unexpected late arrival of glass eels in the early summer for two recent consecutive year classes. The summer recruitment found in our study indicates the unusual phenology of the Japanese eel, which may be a possible response to recent climate change.  相似文献   
10.
It was reported in a preceding paper7) that the Ando soils from Uemura, Choyo, and Kawanishi contained an unknown mineral colloid which was distinctly different in some respects from coexisting allophane. In the Uemura soil, this clay fraction made up more than 20 per cent of the total clay and more than 6 per cent of the soil7).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号